

SCHEDE

PER UNA

FLORA PALINOLOGICA ITALIANA

Contributo n. 2:

Raccolte dell' Isola di Montecristo PAOLO PAOLI - GIOVANNA CIUFFI CELLAI Istituto Botanico di Firenze

Contributo n. 3:

Raccolte della costa tirrenica

DANIELE AROBBA

Laboratorio di Palinologia Istituto Internazionale di Studi Liguri - Finale Ligure

Contributo n. 4:

Schede di nuova impostazione CARLA ALBERTA ACCORSI - LUISA FORLANI

Istituto Botanico di Bologna

Lavori eseguiti con un parziale contributo del C. N. R.

Schede per una Flora Palinologica Italiana Contributo n. 4: Schede di nuova impostazione

CARLA ALBERTA ACCORSI - I.UISA FORLANI (Istituto Botanico di Bologna)

RIASSUNTO

Si continua la pubblicazione di schede per una Flora Palinologica Italiana con criteri di maggior dettaglio rispetto alla metodologia con cui sono state redatte le schede precedentemente pubblicate. Viene illustrato il nuovo schema e la terminologia di nuova istituzione; segue, per comodità di consultazione, una Appendice I al glossario.

ABSTRACT

These cards are a further contribution to a Palynological Italian Flora. More detailed standards are used in comparision with the methodology adopted for the cards formerly published. Therefore the new scheme and the new institute terminology are pointed out; subsidiary Addition I to the glossary follows for easy consultation.

La redazione di schede che illustrano le caratteristiche morfologiche dei pollini e delle spore delle piante italiane, iniziata con una prima pubblicazione (Della Casa Accorsi C. A. e Bertolani Marchetti D., 1974), ha raccolto adesioni da parte di vari polinologi italiani che intendono collaborare alla realizzazione di un'opera di ampio respiro quale dovrebbe essere una Flora Palinologica Italiana.

Con il presente lavoro intendiamo proseguire questa iniziativa riallacciandoci sostanzialmente agli scopi ed alle metodologie con cui essa è stata iniziata. Abbiamo però ritenuto necessario apportare un ampliamento quantitativo al numero di dati descrittivi e biometrici forniti per ciascuna specie considerata, per avere a disposizione il maggior numero possibile di informazioni utilizzabili per una più rigorosa determinazione dei granuli. In base a questi dati speriamo di poter redigere, in un secondo tempo, delle chiavi analitiche soddisfacenti e di poter effettuare anche una eventuale realizzazione di schede perforate.

Tecniche e metodi

La tecnica usata per la preparazione del materiale è quella classica di Erdiman (1969) che il Gruppo di Palinologia della Società Botanica Italiana ha adottato per questo tipo di ricerca (v. anche: Della Casa Accorsi C. A. e Bertolani Marchetti D., 1974).

Le microfotografie sono state eseguite con obiettivo x 100/1,30 e oculare GF x 10 sulle seguenti pellicole:

- Agfaortho 25 professional 35 mm x 10 m DP.-15 Din, sviluppata in Rodinal 1:20 per 5 minuti;
- Ilford Pan F 24 x 36 mm 18 Din, sviluppata in Perceptol 1:3 per 15 minuti.

Come sopra accennato, abbiamo invece modificato la stesura delle schede dando ad esse una impostazione schematica che riunisce i dati sotto otto o nove gruppi iniziali indicanti gli elementi morfologici fondamentali dei pollini e delle spore. Tali elementi sono:

raggruppamento, simmetria, polarità, perimetro, forma, aperture, perina (nelle spore), esina, dimensioni.

Riportiamo come esempio una scheda tipo del tutto generalizzata:

Raggruppamento	tipo (monadi diadi, ecc.)					
Simmetria	tipo (radiosimmetrici, bila	aterali, ecc.)				
Polarità	tipo (isopolari, apolari, ec	:c.)				
Perimetro	descrizione del contorno	nelle varie vi	isioni			
	tipo (oblato, ecc.)	P/E	valori .			
Forma	tipo (pseudo-oblato, ecc.)	P/E1	valori			
rorma	tipo (equi-E, ecc.)	EI/E2	valori	75		
	tipo (oblato •, ecc.)	Dv/Do	valori	standard		
	classificazione Faegri	NPC	valori	star		
Aperture	tipo (colpus, ecc.) dimensi descrizione e rappo		valori	deviazione		
Perina	descrizione	dimensioni		cvia		
Esina	descrizione	dimensioni e rapporti	valori	ъ		
Dimensioni	numero granuli esaminati	P, E(E1, E2), Dv, Do	valori			

Termini e dati di nuova introduzione

Nella pubblicazione delle prime schede è stato riportato un glossario dei termini palinologici principali; poichè nel presente lavoro compaiono termini non compresi in esso, ci è sembrato opportuno redigere, in questa sede, il relativo ampliamento. In tale appendice, compaiono due tipi di termini:

- termini già esistenti nella letteratura palinologica, ma non utilizzati nel primo glossario. Essi sono riportati secondo le modalità seguite nella prima pubblicazione; l'indicazione bibliografica viene data solo quando sono desunti da autori diversi da quelli consultati nella stesura del glossario iniziale;
- termini nuovi, non usati da altri autori. Essi sono stati contrassegnati da un asterisco e sono stati affiancati dalla traduzione inglese del vocabolo.

La loro introduzione si è resa opportuna durante il corso del lavoro per la necessità di dettagliare maggiormente le caratteristiche biometriche dei granuli attraverso numerosi parametri.

In tale elaborazione di termini nuovi abbiamo adottato il criterio di riallacciarci il più possibile alla terminologia in uso per non complicarla inutilmente, e di utilizzare vocaboli e abbreviazioni che possibilmente si colleghino in modo immediato all'aspetto morfologico cui si riferiscono.

Diamo di seguito i chiarimenti necessari relativi ai termini di nuova istituzione, suddivisi secondo i nove gruppi principali usati per le schede:

FORMA

Pollini e spore radiosimmetrici eteropolari

Per definire la forma nel caso dei granuli radiosimmetrici eteropolari, sono stati utilizzati gli stessi termini proposti da ERDTMAN (1971), sostituendo la vocale finale della loro versione italiana (Della Casa Accorsi C. A. e Bertolani Marchetti D., 1974) con la desinenza -ico.

Si sono ottenuti i seguenti termini:

oblatico, suboblatico, subsferoidalico, sferoidalico, prolatico, ecc.

Pollini e spore radiosimmetrici apolari

Per definire la forma dei granuli radiosimmetrici apolari, è stato valutato il rapporto Dv/Do (vedi al paragrafo: Dimensioni). In base al valore di tale rapporto è stata utilizzata la terminologia propria dei

granuli radiosimmetrici isopolari, facendo seguire ad essa il segno distintivo: « • ».

Si sono ottenuti i seguenti termini:

oblato •, suboblato •, subsferoidale •, sferoidale •, prolato •, ecc.

Pollini e spore bilaterali polari

La forma di pollini e spore bilaterali polari è stata definita con due termini, in base ai valori assunti rispettivamente dai rapporti P/E_1 e E_1/E_2 .

Il primo termine, associato al rapporto P/E_1 , è stato ricavato premettendo al termine che definirebbe un granulo radiosimmetrico, con un valore di P/E uguale, il prefisso *pseudo*-, dato che il rapporto P/E_1 trascura l'altro asse equatoriale E_2 che pur contribuisce a definire la forma.

Si sono ottenuti i seguenti termini:

- per i pollini o spore bilaterali isopolari: pseudo-oblato, pseudo-sferoidale, pseudo-prolato, ecc.
- 2) per i pollini o spore bilaterali subisopolari: pseudo-oblatoide, pseudo-sferoide, pseudo-prolatoide, ecc.
- 3) per i pollini o spore bilaterali eteropolari:
 pseudo-oblatico, pseudo-sferoidalico, pseudo-prolatico, ecc.

Il secondo termine, associato al rapporto E_1/E_2 viene definito nel modo seguente:

```
subequi-E< 8/7 (< 1,4)subetero-E8/7 \cdot 8/6 (1,14 \cdot 1,33)etero-E8/6 \cdot 8/4 (1,33 \cdot 2,00)peretero-E> 8/4 (> 2,00)
```

PERIMETRO

Contorni regolari

Per definire contorni regolari, circolari od ellittici, sono stati utilizzati i seguenti termini, dando ad essi un significato preciso in base ai valori assunti dal rapporto tra gli assi:

circolare : detto di perimetro a forma di cerchio, avente un unico diametro. (Tale termine viene utilizzato anche quando una parte, ≤ 30%, dei perimetri considerati, presenta

differenze minime di dimensioni, tali che il loro rapporto sia compreso tra 0.95-1.05).

subcircolare: detto di perimetro in cui il rapporto tra i due assi è com-

preso tra 7/8-8/7 (0,88-1,14).

ovale : detto di perimetro ellittico in cui il rapporto tra i due assi

è compreso tra 8/7-8/6 (1,14-1,33) o tra 6/8-7/8 (0,75-0,88).

ellittico : detto di perimetro in cui il rapporto tra i due assi è >

di 8/7 (> 1,14) o < di 7/8 (< 0,88).

Visioni nei granuli radiosimmetrici apolari

Tali granuli possono presentarsi in due diverse posizioni, indicate nel modo seguente:

- 1) Visione isoassiale: posizione del granulo che permette di valutare le dimensioni uguali (Do)
- 2) Visione eteroassiale: posizione del granulo che permette di valutare gli assi Dv e Do.

APERTURE

Nella descrizione di aperture composte, ai termini che indicano le dimensioni delle parti colpale ed orale (lunghezza, larghezza; asse maggiore, asse minore), ne abbiamo affiancati altri che ne specificano la direzione:

P-colpus: dimensione del colpus avente la stessa direzione dell'asse P del granulo

E-colpus: dimensione del colpus avente la stessa direzione dell'asse E del granulo

P-os : dimensione dell'os avente la stessa direzione dell'asse P del granulo

E-os : dimensione dell'os avente la stessa direzione dell'asse E del granulo.

Tali termini danno un'immediata indicazione della forma dell'apertura cui si riferiscono e cioè se è allungata longitudinalmente o trasversalmente (dato interessante soprattutto per gli ora, frequenti sia in forma lolongata che lalongata, mentre i colpi sono in genere longitudinali); essi inoltre ci hanno permesso di schematizzare un indice utile nella determinazione dei granuli tricolporati, in quanto individua i reciproci rapporti tra le due parti dell'apertura:

P-colpus / P-os: rapporto tra le due dimensioni orientate secondo l'asse P E-colpus / E-os: rapporto tra le due dimensioni orientate secondo l'asse E.

DIMENSIONI

Pollini e spore radiosimmetrici apolari

La terminologia indicante le dimensioni dei suddetti granuli è emersa dalla individuazione dei seguenti casi:

1) Granuli isodiametrici

Si tratta di granuli sferici o poliedrici aventi le dimensioni uguali, che vengono indicate con un unico simbolo D (= diametro). Questa terminologia è stata utilizzata anche quando almeno il 70% dei granuli ha un unico diametro D ed i rimanenti presentano differenze minime di dimensioni (DM/Dm) compreso tra 1,00-1,05).

2) Granuli non isodiametrici

Tali granuli hanno due dimensioni uguali (o con differenze minime) e la rimanente decisamente diversa; essi presentano analogie di forma con i granuli radiosimmetrici polari.

Le loro dimensioni sono indicate come segue:

Dv (diametro verticale) : indica la dimensione diversa e si può riferire per comodità di rappresentazione all'asse P dei granuli polari;

Do (diametro orizzontale): indica le due dimensioni uguali e si può riferire all'asse E dei granuli polari.

Ovviamente, a seconda dei casi, Dv (o Do) potrà rappresentare la dimensione maggiore o minore del granulo.

L'uso della suddetta terminologia impone sempre un esame del granulo tale da valutarne le tre dimensioni, operazione spesso problematica data l'assenza di polarità ed il conseguente aspetto assai omogeneo dei granuli nelle varie visioni. Per questo, accanto al rapporto Dv/Do, è stato riportato il rapporto DM/Dm (Diametro maggiore/Diametro minore), che pur non essendo significativo per individuare la forma del granulo, può essere di valutazione più veloce e più confrontabile con i dati di altri Autori.

Asplenium viride Hudson

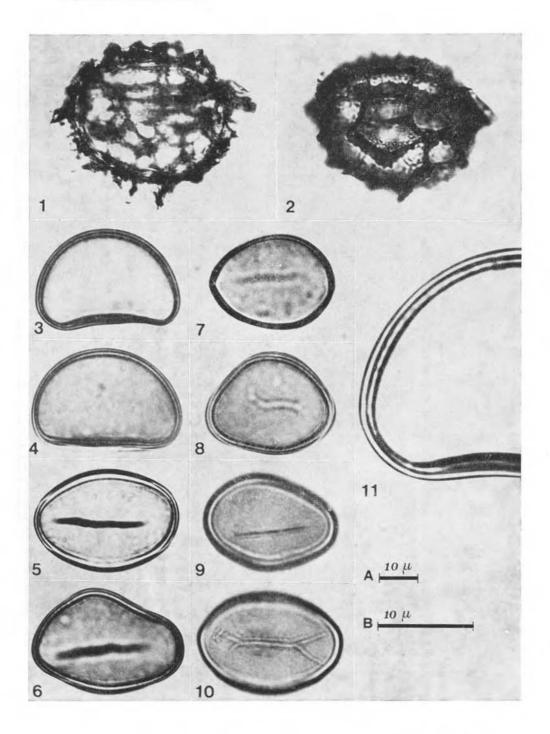
Erbario Palinologico Istituto Botanico Bologna n. 44 Val Malenco (SO) m. 1500 - 1.7.1971

Raggruppa	amento	monadi					
Simmetria	a	bilaterali e dorsoventrali (± regolarmente)					
Polarità		eteropolari					
Perimetro (rispetto all'esina)		visione polare : ellittiche(77%),ovate(20%),ellittico-piriformi(1%), romboidali(2%) visione equatoriale: piano-convesse(34%),concavo-convesse(66%). Il con- torno è spesso(75%) modificato da una membrana psi- lata tesa lungo la laesura					
			I.C.	1,6 (1 - 3)	$\sigma = \pm 0,5$		
Forma		t regolarmente reniformi pseudo-oblatiche (92%) pseudo-suboblatiche(8%)	P/E ₁	0,68(0,58-0,82)	$\sigma = \pm 0,05$		
Torma		subetero-E (22%) etero-E (78%)	E ₁ /E ₂	1,44(1,10-1,93)	$\sigma = \pm 0, 18$		
		monoleti	NPC	113			
1		lineare, variabile agli estremi: indivisa (94%)	lunghezza (L)	29,5(15,2-45,5)μ	$\sigma = \pm 4,7$		
Aperture	laesura	biforcata a un estremo(2%) biforcata in ambedue (4%), a volte(20%)inclinata o	E ₁ /laesura	1,45(1,10-2,17)	$\sigma = \pm 0,22$		
		incurvata; margine ispessito	margine	0,5 - 1,2μ			
		molto deteriorabile; pieghettata; pieghe di altezza abbastanza	spore con perina dopo acetolisi	16%			
Perina		costante,simili a creste,ana- stomizzate in un disegno re-	sporgenza pieghe dall'esina	1,5 - 9,5µ			
		ticoloide a larghe maglie. Formano lungo il contorno dell'esina un'ala irreg. e	dimens. maglie (valori medi)	17,7µ x 10,2µ < 1 µ	$\sigma = \pm 5,5$ $\sigma = \pm 3,5$		
		processi spiniformi o baston- celliformi. Pieghe spinulate distalmente.	spinule distali	< 1 µ			
Esina		psilata	indice esina (esina/ E ₁) spessore	0,04(0,03-0,06) 1,8(1,4-2,2)µ	$\sigma = \pm 0,01$ $\sigma = \pm 0,2$		
			sex./nex.	1	,-		
			P	28,4(24,6-36,9)µ			
Dimensioni (perina esclusa)		su 50 granuli	E ₁	41,8(33,0-50,4)μ 30,0(24,6-34,4)μ			

Iconografia

Scala A: figg. 1-10 — Scala B: fig. 11

Figg. 1, 2: spore con perina.


Figg. 3, 4: spore prive di perina. Variabilità di perimetro in visione equatoriale — concavo-convessa (fig. 3); piano-convessa (fig. 4).

Figg. 5-10: spore prive di perina. Variabilità di perimetro in visione polare — ellittiche (figg. 5, 10); ellittico-piriforme fig. 6); ovate (fig. 7); irregg. romboidale (fig. 8); irregg. ovata (fig. 9).

Tipi di laesura — indivisa, diritta (figg. 5, 7); indivisa inclinata (figg. 6, 9); indivisa, incurvata (fig. 8); biforcata ai due estremi, diritta (fig. 10).

Fig. 11: particolare — esina in sezione ottica.

Asplenium viride Hudson

C. A. Accorsi Istituto Botanico dell'Università di Bologna

Phyllitis scolopendrium (L.) Newman Erbario Palinologico Istituto Botanico Bologna n. 43 O.B. Bologna - 18.7.1971

Raggruppa	amento	monadi					
Simmetria		bilaterali e dorsoventrali (± regolarmente)					
Polarità		eteropolari					
Perimetro (rispetto al- l'esina)		visione polare: ellittiche(44%),ellittico-romboidali(32%),romboidali(6%), ovate(6%),ellittico-oblunghe(6%),piriformi(2%),ellitticopiriformi(2%),oblungo-romboidali(2%) vísione equatoriale: piano-convesse(18%),concavo-convesse(78%),concavoirregolarmente coniche(4%).Tale contorno è però mo- dificato da una membrana psilata tesa lungo la lae-					
		sura.					
			I.C.	1,4(1,0-3,0)µ	$\sigma = \pm 0.4$		
		± regolarmente reniformí					
Forma		pseudo-oblatiche	P / E ₁	0,61(0,50-0,74)	$\sigma = \pm 0.06$		
		subetero-E(4%), etero-E(96%)	E ₁ / E ₂	1,62(1,26-1,94)	$\sigma = \pm 0.15$		
	F	monoleti	NPC NPC	113			
		lineare o ± regolar. fusi- forme, variabile agli estre-	Lunghezza (L)	23,2(19,5-29,0)µ	σ=± 2,9		
Aperture	laesura	mi: indivisa (54%) biforcata a l estremo(28%)	E ₁ /L-laesura	1,47(1,16-1,72)	σ=± 0,13		
		biforcata in ambedue (18%); a volte(12%)inclinata; margine ispessito	largh.margine	0,5 - 1,2μ			
		facilmente deteriorabile; pieghettata molto irregolar- mente. Pieghe di altezza e	spore con perina dopo acetolisi	24%			
Perina		lunghezza variabili, spinula- te distalmente, anastomizza- te irreg. con disegno reti- coloide aperto, o vermicola-	sporgenza pieghe dall'esina	<u><</u> 7 μ			
		re. Formano lungo il con- torno dell'esina un'ala ir- reg. e processi vagamente spiniformi	spinule distali	<u><</u> 1 μ			
·			spessore	1,7(1,3-2,0)µ	$\sigma = \pm 0,2$		
Esina			sex./nex.	1			
		psilata	indice esina (esina/E ₁)	0,05(0,04-0,06)	$\sigma = \pm 0,01$		
Dimension	ni		P	20,6(16,1-26,0)μ	$\sigma = \pm 2,2$		
(perina	a	su 50 granuli	E ₁	33,7(28,4-37,5)µ	$\sigma = \pm 1,7$		
esclusa	a)		E ₂	21,0(18,2-27,8)µ	$\sigma = \pm 2,3$		

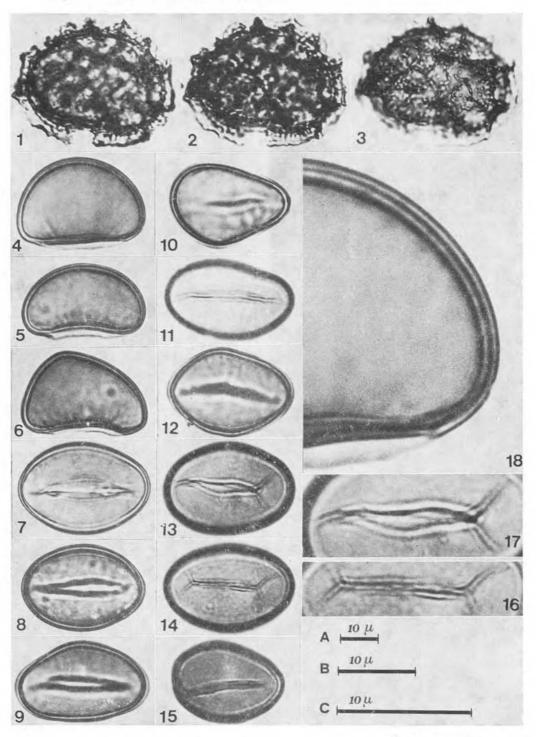
Iconografia

Scala A: figg. 1-15 — Scala B: figg. 16, 17 — Scala C: fig. 18

Figg. 1-3: spora con perina.

Figg. 4-6 : spore prive di perina. Variabilità di perimetro in visione equatoriale - piano-convessa (fig. 4); concavo-convessa (fig. 5);

concavo-irregolarmente conica (fig. 6).


Figg. 7-15: spore prive di perina. Variabilità di perimetro in visione polare — ellittiche (figg. 7, 8, 13, 14); oblungo-romboidale (fig. 9); piriforme (fig. 10); ellittico-piriforme (fig. 11); irregolarmente romboidale (fig. 12); ovata (fig. 15).

Tipi di laesurae — regolar. fusiformi, diritte, indivise (figg. 7-9); lineari, diritte, indivise (figg. 10-12); fusiforme, diritta, biforcata ad un estremo (fig. 13); lineare, diritta, biforcata ai due estremo (fig. 14): lineare, inclinata, leggermente biforcata

due estremi (fig. 14); lineare, inclinata, leggermente biforcata (fig. 15).

Figg. 16-18: particolari — laesurae (figg. 16, 17); esina in sezione ottica (fig. 18).

Phyllitis scolopendrium (L.) Newman

C. A. Accorsi Istituto Botanico dell'Università di Bologna

POLYPODIACEAE

Polypodium vulgare L. Erbario Palinologico Istituto Botanico Bologna n. 41 Monte Venere (BO) m. 966 - 9.5.1971

Dagania							
Raggruppa Simmetria		monadi					
Polarità	4	bilateralie dorsoventrali (±regolarmente)					
rolatita		eteropolari	1-/017\ 1		ah lumah a		
Perimetro		visione polare : ellittiche(81%),leggermente ovate(10%),oblunghe (5%), leggermente romboidali(4%). visione equatoriale: concavo-convesse. Il contorno è modificato da una membrana psilata tesa lungo la laesura e occupante la concavità del perimetro. 1.C. 4,2(3,0-7,0)µ σ = ±0,8					
		t regolarmente reniformi		· / = \= / = / = / F			
Forma		pseudo-oblatiche (99%) pseudo-suboblatiche (1%)	P / E ₁	0,61(0,51-0,76)	$\sigma = \pm 0,05$		
		subetero-E(3%),etero-E(97%)	E ₁ /E ₂ NPC	1,54(1,29-1,78)	$\sigma = \pm 0,04$		
		monoleti		113			
Anomerum	1.00000	lineare o fusiforme,	Lunghezza (L)	31,9(26,2-43,1)µ	σ = ±3,1		
Aperture	laesura	indivisa agli estremi, a volte(12%)obliqua;	margine	0,8 - 1,5μ 1,80(1,50-2,07)			
		margine ispessito	E ₁ /L-laesura	1,80(1,50-2,07)	$\sigma = \pm 0,12$		
Perina		assente					
		verrucoso-circonvoluta; processi verrucoidi,larga-	spessore	3,2(2,2-5,8)µ	$\sigma = \pm 0.8$		
		mente ottusi, di dimensioni crescenti dai bordi della	sex./nex.	2 - 3			
		laesura al centro della fac- cia distale,con forma basa- le varia:	largh.basale processi	1,2 - 6,0µ			
Esina		t circolari o poligonali ai lati della laesura, largamente nastriformi,ver-	lungh.basale processi	1,2 - 18,0µ			
		micolari, simili a circonvo- luzioni cerebrali all'equa-	alt.processi	1,5 - 4,0µ			
		tore e sulla faccia distale. Gli avvallamenti tra i pro- cessi sono a forma di stret-	largh. striae	0,3 - 1,0µ			
		te striae con brevi ramifi- cazioni laterali(all'equato- re e sulla faccia distale)e determinano un disegno reti- coloide.	indice esina (esina/E ₁)	0,06(0,04-0,09)	$\sigma = \pm 0.01$		
			P	34,4(25,4-50,1)µ	$\sigma = \pm 5,0$		
Dimension	ni	su 100 granuli	E ₁	57,0(47,7-73,9)µ			
		<u> </u>	E ₂	37,3(28,5-54,7)μ			

Iconografia

Scala A: figg. 1-6 — Scala B: figg. 7-9

Figg. 1-2: visione prossimale.

Fig. 3: visione quasi equatoriale.

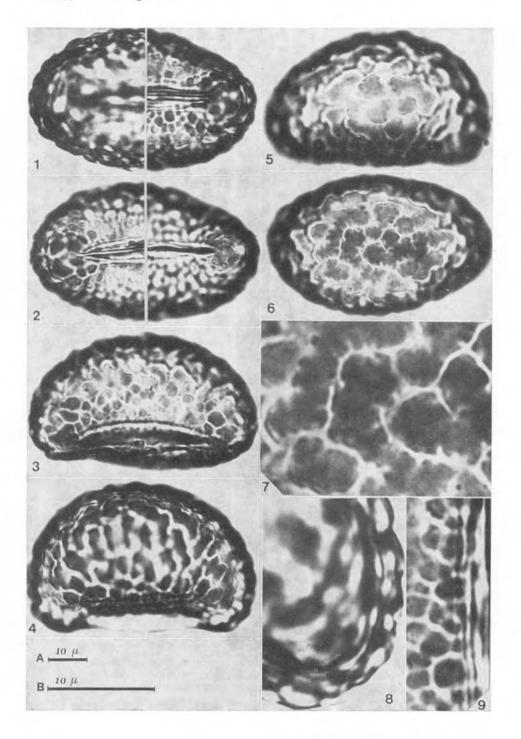

Fig. 4: visione equatoriale.Fig. 5: visione quasi distale.

Fig. 6: visione distale.

Figg. 7-9: particolari — processi al polo distale (fig. 7); esina in sezione ottica (fig. 8); processi in prossimità della laesura (fig. 9).

POLYPODIACEAE

Polypodium vulgare L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

ALISMATACEAE

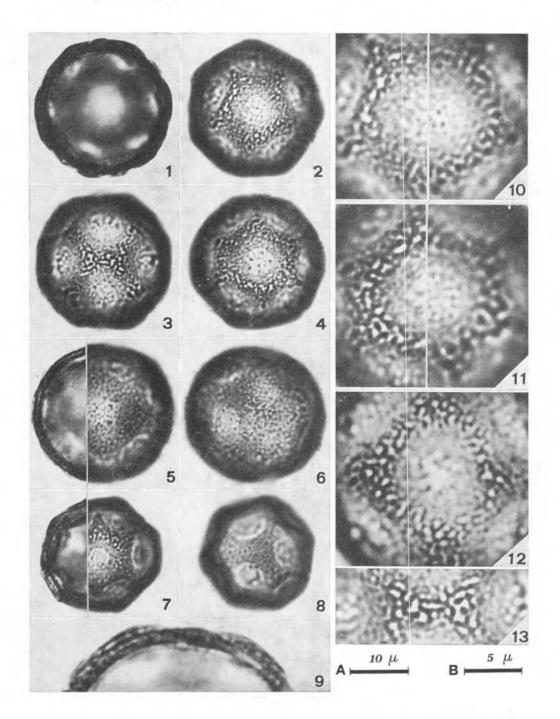
Alisma plantago-acquatica L. Erbario Palinologico Istituto Botanico Bologna n. 84 O.B. (BO) - 24.7.1975

Raggruppa	mento	monadi					
Simmetria	l	radiosimmetrici					
Polarità		apolari					
		visione isoassiale :d	la reg.poligor	nali a circolari			
Perimetro)	visione eteroassiale:d	la reg.poligor	nali a circolari(8	8%),		
		d	la poligonali	a subcircolari(12	%)		
		da reg.poliedrici a					
		sferici• (88%)	D /D	1 00/0 02-1 05)	$\sigma = \pm 0.01$		
Forma		da poliedrici a sfe-	D _v /D _o	1,00(0,92-1,05)	0 - 10,01		
		roidalie(12%)					
			DM/Dm	1,01(1,00-1,09)	$\sigma = \pm 0,01$		
		periporati	NPC	764			
		reg.distribuiti;a	numero pori	15 (12-19)	_		
		volte infossati	distanza				
		VOILE INTOSSALI	tra i pori	5,6 (4,0 -9,0) μ	$\sigma = \pm 0,9$		
Aperture	nori		dM	4,5 (3,0 -6,0)μ	$\sigma = \pm 0.6$		
Aperture	POLI	da circolari ad el-	dm	$4,0 (3,0 -5,0)\mu$	$\sigma = \pm 0.5$		
		littici	dM/dm	1,15(1,00-1,71)	$\sigma = \pm 0.10$		
		annulus assente	Gri/ Gili	1,15(1,00 1,71)	,		
		membrana porale ri-					
		coperta da granuli	granuli (d)	≤1 μ			
		regolari	grandii (d)	ν μ			
······································	<u> </u>	tectata, reticolata,					
		eterobrocata:					
		distintamente retico-	spess.esina	1,9 (1,5 -2,2)μ	$\sigma = \pm 0, 2$		
		lata nel mezzo delle	spess.sexina	1,0 (0,8 -1,2)µ	$\sigma = \pm 0, 1$		
		zone interporali do-	spess.nexina	$0,9 (0,5-1,2)\mu$	$\sigma = \pm 0,2$		
Esina		ve forma bande di re-	sex./nex.	1,11(0,67-1,50)	$\sigma = \pm 0.31$		
		ticolo che suddivido-	indice esina	0,08(0,06-0,09)	$\sigma = \pm 0,01$		
		no la superf. del	numero lati	5 (4 - 6)			
		granulo in poligoni.	poligono				
		Al centro di ogni po-	lungh.lato	6,9 (4,0 -10,0)µ	$\sigma = \pm 1,2$		
		ligono si trova un	largh.lato	$2,5$ $(1,5-4,5)\mu$	$\sigma = \pm 0.5$		
		poro.A volte la strut-	lumina	≤2 μ			
		tura suddetta é poco	largh.muri	₹1 μ			
		evidente(8%);		_			
		finemente o indistin-	spess.esina	1,7 (1,5 -2,0)μ	$\sigma = \pm 0,2$		
		tamente reticolata	lumina	<0,8 μ			
		dal margine del poro	largh.muri	<0,5 μ			
		ai lati del poligono					
			distanza po- ro dai lati	1,9 (1,0 -3,0)μ			
Dimension	ni	su 50 granuli	$D_{\mathbf{v}}$	23,0(16,2-25,5)μ	$\sigma = \pm 1,3$		
2 Inches Io		oo oo giiilari	Do	23,2(16,2-25,5)µ	$\sigma = \pm 1, 2$		

Iconografia

Scala A: figg. 1-8 — Scala B: figg. 9-13

Figg. 14: granulo leggermente poliedrico, con poligoni molto evidenti.


Figg. 5-6: granulo sferoidale • con poligoni poco evidenti.

Figg. 7, 8: granulo nettamente poliedrico.

Figg. 9-13: particolari — esina in sezione ottica (fig. 9); poligoni e pori (figg. 10-12); reticolo al centro delle zone interporali (fig. 13).

ALISMATACEAE

Alisma plantago-acquatica L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

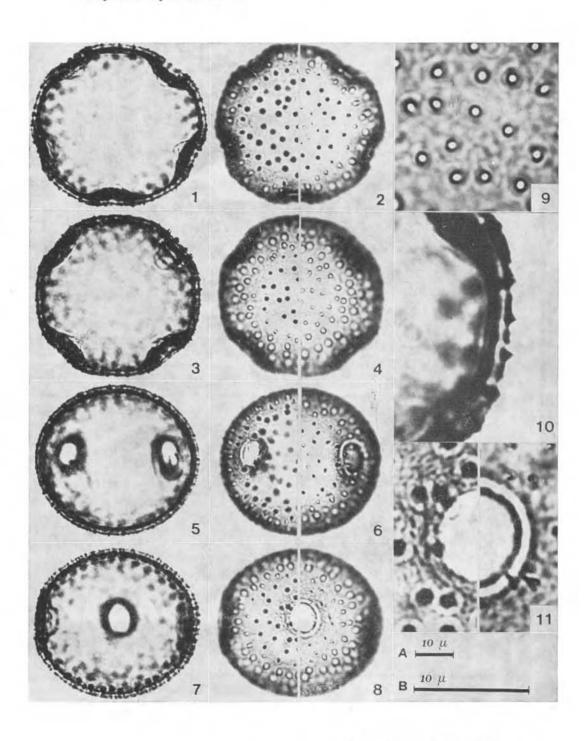
CAMPANULACEAE

Campanula rapunculoides L. Erbario Palinologico Istituto Botanico Bologna n. 77 Monte Donato (BO) - 15.6.1975

Raggruppamento	monadi						
Simmetria	radio	simmetrici					
Polarità	isopo						
Perimetro		ne polare : da subcir ne equatoriale: subcircol					
Forma		lati (14%) o-sferoidali (86%)	P / E	0,90 (0,84-0,94)	$\sigma = \pm 0,02$		
	tetra	porati (49%)	NPC	444			
	penta	porati (51%)	NPC	544			
		circolari (56%)	diametro	8,3 (7,0-10,0)μ	$\sigma = \pm 0.8$		
		ovali (44%)	diam.maggiore	9,6 (8,0-11,0)µ	$\sigma = \pm 0.8$		
	pori	OVAII (44%)	diam.minore	8,3 (7,0-10,0)μ	$\sigma = \pm 0.7$		
Aperture		disposti in una fascia equatoriale;	distanza meso- poria	15,0 (9,0-24,0)μ	$\sigma = \pm 3,2$		
		annulus evidente, a vol- te con spinule; membrana scabrata	annulus	1,5 (1,0-2,0)μ	$\sigma = \pm 0,2$		
			spessore	3,2(2,0-3,8)	$\sigma = \pm 0.3$		
	tecta	ta, echinulata	sex/nex	2 - 5			
			indice esima	0,07(0,05-0,09)	$\sigma = \pm 0.01$		
Esina			base	0,8 - 1,2μ			
	spinu	1.00	altezza	0,5 - 2,0μ			
	Spinu	rae	distanza	1,0 - 6,5µ			
			densità	9 - 17/100µ ² '			
Dimensioni	ev. 50	granuli	P	40,6(32,5-44,0)µ	$\sigma = \pm 1.8$		
D 2.11.011.0 2.011.2	30 30	RIAMOII	E	45,2(36,0-49,2)µ	$\sigma = \pm 2.1$		

lconografia

Scala A: figg. 1-8 — Scala B: figg. 9-11


Figg. 1, 2: granulo pentaporato — visione polare.

Figg. 3-8: granulo tetraporato — visione polare (figg. 3, 4); visione equatoriale con mesoporium (figg. 5, 6); visione equatoriale con poro (figg. 7, 8).

Figg. 9-11: particolari — esina con spinulae (fig. 9); esina in sezione ottica (fig. 10); poro (fig. 11).

CAMPANULACEAE

Campanula rapunculoides L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

CAMPANULACEAE

Campanula rapunculus L.

Erbario Palinologico IstitutoBotanico Bologna n. 39 Marina Romea (RA) - 15.6.1975

Raggruppament	monadi			
Simmetria	normalmente radiosi			
Polarità	isopolari(ecceziona	lmente eteropolari)		
	visione polare	: circolari,raramente	subtriangolari o su	bquadrango-
Perimetro		lari,goniotremi		
	visione equatoriale	: ellittici (55%) o s	ubcircolari (45%) 📑	
	oblati (6%)		
Forma	suboblati (4	9%) P/E	0,85 (0,70-1,00)	$\sigma = \pm 0.06$
	oblato-sferoidali(4	5%)		, , , , , ,
	diporati (4%) NPC	244	
	triporati (7	7%) NPC	344	
	tetraporati (13	8%) NPC	444 (404)	
1	pentaporati (1%) NPC	544 (504)	
Aperture	circolari od o sposti in una equatoriale;ec nalmente,nei to	fascia cezio - (annulus com	e 6.8 (3.0=9.0)	$\sigma = \pm 1,2$
	pentaporati,un in posizione pe	poro è annulus	1,1 (1,0-2,0)μ	$\sigma = \pm 0,2$
		spessore	1,9 (1,0-3,0)μ	$\sigma = \pm 0.3$
	tectata, spinulata	sex./nex.	1,64(1,00-2,00)	$\sigma = \pm 0.30$
		indice esina	0,04(0,02-0,10)	$\sigma = \pm 0.02$
	spinulae ad apice a	rroton- altezza	0,5 - 1,5 μ	
Esina	dato, distribuite un		1 - 2 μ.	
	mente su tutta la s	uperfi- densità	30-36 / 100 μ ²	
	cie del granulo.			
Dimensioni	su 100 granuli	P E	26,0 (16,0-36,0)µ 30,2 (18,5-41,3)µ	

Iconografia

Scala A: figg. 1-5; 7-10 — Scala B: figg. 6; 11-14

Figg. 1-3 : granulo tetraporato in visione polare.

Figg. 4-5-7-8-9: granulo triporato — visione polare (figg. 4, 5); visione equa-

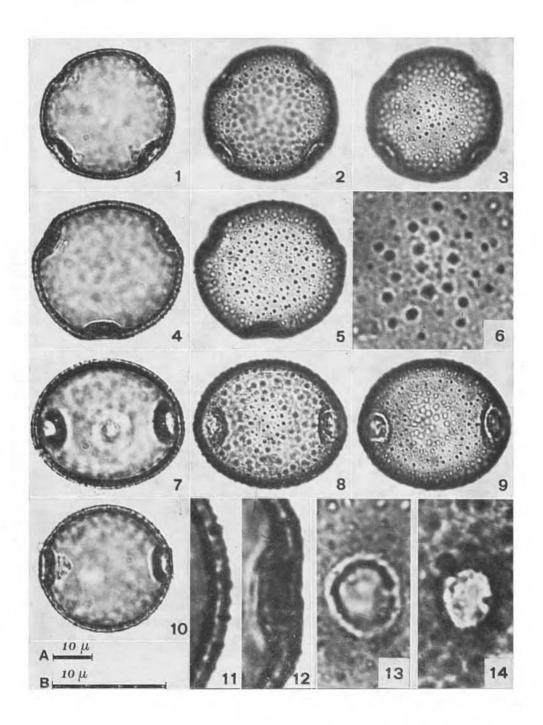

toriale con mesoporium (figg. 7-9).

Fig. 10 : granulo diporato.

Figg. 6; 11-14: particolari — spinulae (fig. 6); esina in sezione ottica (fig. 11); poro in sezione ottica (fig. 12); poro (figg. 12, 13).

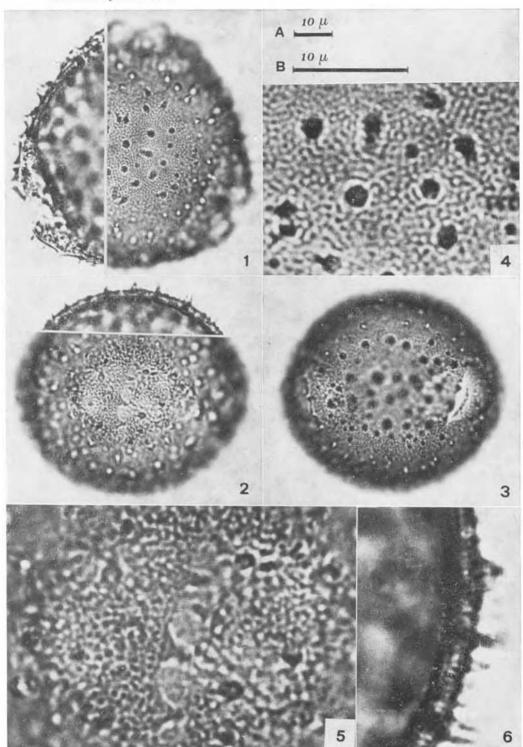
CAMPANULACEAE

Campanula rapunculus L.

C. A. Accorsi Istituto Botanico dell'Università di Bologna

Lonicera xylosteum L. Erbario Palinologico Istituto Botanico Bologna n. 76 Traserra (BO) m. 558 - 2.6.1974

Raggruppa	mento	monadi			
Simmetria		radiosimmetrici			
Polarità		isopolari			
Perimetro	,		angolari o quadrango germente convessi. circolari(86%).ellit		on i lati
Forma		oblato-sferoidali (84%) prolato-sferoidali(2%) suboblati (14%)	Р / Е	0,92(0,81-1,02)	$\sigma = \pm 0,04$
		tricolporati (91%)	NPC	345	
		tetracolporati (9%)	NPC	445	
	colpi	corti,strettamente fusi- formi;margine non	Lunghezza(P-colpus) larghezza(E-colpus)	4,5(2,9-5,5)μ	$\sigma = \pm 0.6$
		ispessito, spesso bor-	P/P-colpus	2,99(2,52-3,80)	$\sigma = \pm 0,20$
		dato di spinae	lato triang.polare	45,2(39,3-51,0)μ	$\sigma = \pm 2,2$
Aperture			indice area polare	0,72(0,62-0,80)	$\sigma = \pm 0.05$
	ora	lalongati,a contorno	asse minore(P-os)	18,7(15,2-20,8)μ	
		ovale; margine sottile,	asse maggiore(E-os)	23,6(18,9-29,3)µ	$\sigma = \pm 1,7$
		non ben definito	P-colpus/P-os	1,03(1,00-1,20)	$\sigma = \pm 0.03$
			E-colpus/E-os	0,19(0,12-0,23)	$\sigma = \pm 0,02$
			larghezza mesoria	26,0(22,3-29,3)µ	$\sigma = \pm 2,6$
		tectata;echinata;fine- mente reticolata tra le	spessore(processi inclusi)	5,2(4,6-5,5)µ	$\sigma = \pm 0,3$
		spinae;bacula infratec- tali.Sexina sollevata e	sex./nex.	2,5 - 4,5	
Esina		ingrossata in corrispon- denza delle aperture; nexina costante.	indice esina	0,08(0,07-0,09)	$\sigma = \pm 0,01$
		nexina costante.	diametro basale	1,7(0,8-3,1)µ	$\sigma = \pm 0.5$
		spinae di diametro basa-		$2,9(1,7-5,0)\mu$	$\sigma = \pm 0.6$
1 *		le e altezza variabili	distanza	$3.9(1.0-7.7)\mu$	$\sigma = \pm 0.9$
		Te c ditesza valiaulli	densità	$4 (2-6)/100 \mu^2$	$\sigma = \pm 1$
Dimension	;		P	57,7(45,8-62,4)μ	
(processi	-	su 50 granuli	E	$63.0(53.9-68.9)\mu$	$\sigma = \pm 3.2$
clusi)	ılı-		E.	υ 3,0 (33,3-00,3)μ	u = ±3,2


Iconografia

Scala A: figg. 1-3 — Scala B: figg. 4-6

Figg. 1-3: granulo tricolporato — visione polare (fig. 1); visione equatoriale con apertura composta (fig. 2); visione equatoriale con mesorium (fig. 3).

Figg. 4-6: particolari — spinae e microreticolo (fig. 4); apertura composta (fig. 5); esina echinata in sezione ottica (fig. 6).

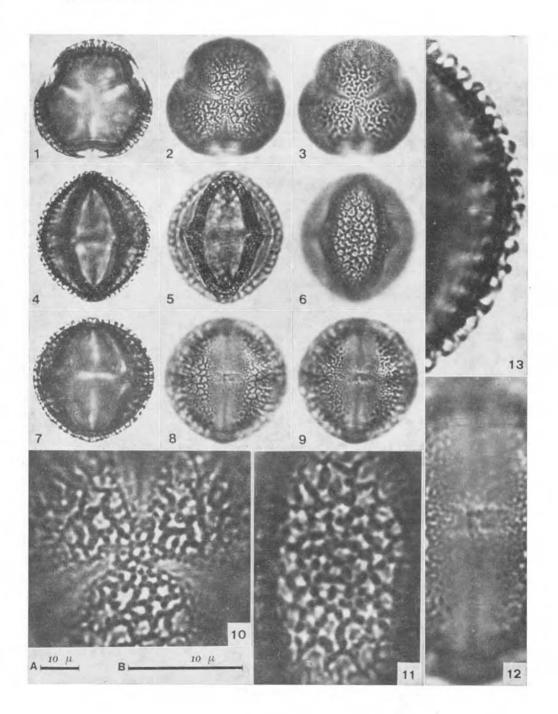
Lonicera xylosteum L.

C. A. Accorsi Istituto Botanico dell'Università di Bologna

Viburnum tinus L. Erbario Palinologico Istituto Botanico Bologna n. 1 O.B. (BO) - 15.4.1970

_	<u> </u>						
Raggruppamento		monadi					
Simmetria		simmetrici					
Polarità	isopo						
Perimetro	visione polare: perim.esterno(dato dalla sexina)-pticotremo, subtriar con vertici arrotondati e lati infossati al centro, que uguale al perimetro interno; perim.interno(dato dalla nexina)-esagonale con tre la piani e tre lati da piani a leggermente concavi.						
Forma	sfero: subpre	(4-10)	P / E	1,08(0,98-1,17)	$\sigma = \pm 0,06$		
	trico.	lporatí	NPC	345			
		fusiformi,infossati	Lunghezza(P-colpus) larghezza(E-colpus)		$\sigma = \pm 2.4$ $\sigma = \pm 0.7$		
	colpi	margine distinto;	P/P-colpus	1,16(1,10-1,22)	$\sigma = \pm 0.03$		
		membrana colpale fi-	largh.mesocolpium	$17,1(15,4-20,0)\mu$	$\sigma = \pm 1.6$		
		nemente scabrata.	lato triang.polare	3,4(3,1-4,6)µ	$\sigma = \pm 0.2$		
Aperture			indice area polare	0,10(0,08-0,12)	$\sigma = \pm 0.01$		
•		lalongati,strettamen-	asse minore(P-os)	$2,5(2,3-3,1)\mu$	$\sigma = \pm 0.2$		
		te rettangolari,ellit-	asse maggiore(E-os)		$a = \pm 0.7$		
		tici o a forma di otto	P-colpus/P-os	11.33(7.63-13.83)			
	ora	rovesciato; margine	•		, , , , , , , , , , , , , , , , , , , ,		
		irregolare non ben de- finito.	E-colpus/E-os	1			
	subte	tata, reticolata (reti-	spessore esina	3,4(2,0-4,6)µ	$\sigma = \pm 0.4$		
	pilat.	a),legger.eterobroca-	sex./nex.	1,8 - 2,5			
Esina)	ımina più piccoli vi- ai colpi e formanti	diametro lumina centro apocolpia	0,6 - 1,5µ			
	lungo	essi un margine di-	diametro lumina centro mesocolpia	2,0 - 4,2µ			
		decrescente verso i	larghezza muri	≤ lµ			
	•	nexina costante.	indice esina	0,11(0,10-0,14)	$\sigma = \pm 0.01$		
	1		P P	32,3(27,1-39,7)µ	$\sigma = \pm 2.7$		
Dimensioni	su 50	granuli	E	$29,9(25,8-32,3)\mu$	$\sigma = \pm 1,5$		

Iconografia


Scala A: figg. 1-9 — Scala B: figg. 10-13

Figg. 1-6 : granulo tricolporato — visione polare (figg. 1-3); visione equatoriale con mesocolpium (figg. 4-6).

Figg. 7-9: granulo tricolporato — visione equatoriale con apertura composta.

Figg. 10-13: particolari — reticolo nell'apocolpium (fig. 10); reticolo nel mesocolpium (fig. 11); apertura composta (fig. 12); esina in sezione ottica (fig. 13).

Viburnum tinus L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

CARYOPHYLLACEAE

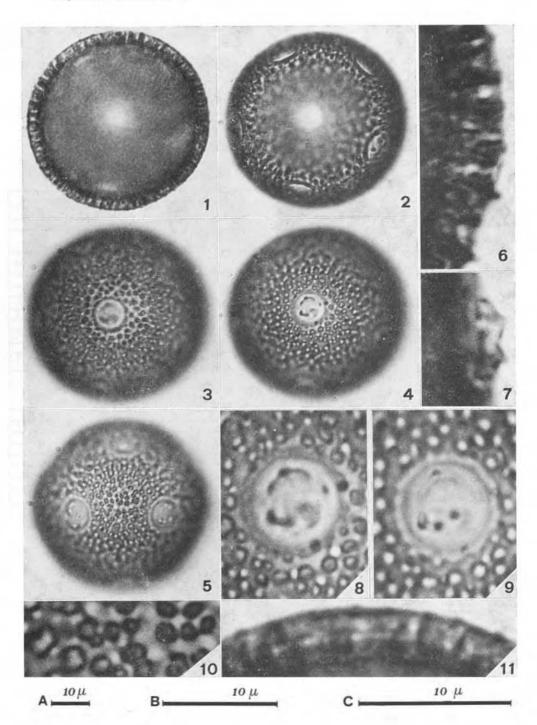
Saponaria officinalis L. Erbario Palinologico Istituto Botanico Bologna n. 78 S. Maria Codifiume (FE) - 25.7.1974

Raggruppamento		monadí					
Simmetria		radiosimmetrici					
Polarità	1	apolari					
IOIAIILA		visione isoassiale :ci	rcolari				
Perimetro)	visione eteroassiale:da		subcircolari			
Forms		oblato-sferoidali•(60%) sferici• (40%)	D _v /D _o	0,97(0,88-1,00)	$\sigma = \pm 0,03$		
Forma		3161101	DM/Dm	1,03(1,00-1,14)	$\sigma = \pm 0.03$		
		periporati	NPC	764			
			numero pori	10 (9-13)			
		pori regolarmente distribuiti	distanza tra i pori	12,8(6,0-25,0) µ			
		da circolari ad	dM	8,7(5,5-11,0) μ	$\sigma = \pm 1, 2$		
		ellittici	dm		$\sigma = \pm 1, 1$		
Aperture	nomi		dM/dm	1,09(1,00-1,43)	$\sigma = \pm 0.09$		
Apercure	poll	annulus evidente	largh.annulus	1,2(0,8-2,0) μ	$\sigma = \pm 0,3$		
			dM poro largh.annulus	7,59(3,75-12,50)	$\sigma = \pm 1,80$		
		membrana porale con bacula e spinulae,i-	numero bacula e spinulae	3 - 30			
		solate o ammassate in un opercolo compatto	diam.bacula o spinulae	1,5(0,5-3,0) μ	$\sigma = \pm 0,5$		
			spess.esina		$\sigma = \pm 0.5$		
		baculata e spinulata;	spess.sexina	$2,2(1,2-3,5)$ μ	$\sigma = \pm 0,5$		
		sexina decrescente	spess.nexina	1,1(0,7-1,8) μ	$\sigma = \pm 0,2$		
Esina		verso i pori	sex./nex.	2,09(1,17-4,00)	$\sigma = \pm 0,70$		
ESTHA			indice esina	0,08(0,06-0,11)	$\sigma = \pm 0.01$		
		bacula	dM	1,2(0,5-3,0) μ	$\sigma = \pm 0,5$		
		vacura	densità	35(22-50)/100 μ ²			
		spinulae	altezza	0,7(0,2-1,2) μ	$\sigma = \pm 0,2$		
		Spinatae	densità	$17(14-31)/100 \mu^2$			
Dimensioni		su 50 granuli	D _V (Dm)	41,0(29,0-50,0) μ	σ = ±4,6		
		·	D _O (DM)	42,3(30,0-51,0) μ	$\sigma = \pm 4,6$		

Iconografia

Scala A: figg. 1-5 — Scala B: figg. 6, 7, 8, 9, 11 — Scala C: fig. 10

Figg. 1-4: granulo sferoidale • a diversi fuochi.


Fig. 5: stesso granulo con zona interporale al centro.

Figg. 6-11: particolari — esina con spinulae evidenti in sez. ottica (fig. 6);

poro con operculum in sez. ottica (fig. 7); poro a due diversi fuochi (figg. 8, 9); bacula e spinulae (fig. 10); esina in sez. ottica con stratificazione evidente (fig. 11).

CARYOPHYLLACEAE

Saponaria officinalis L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

COMPOSITAE

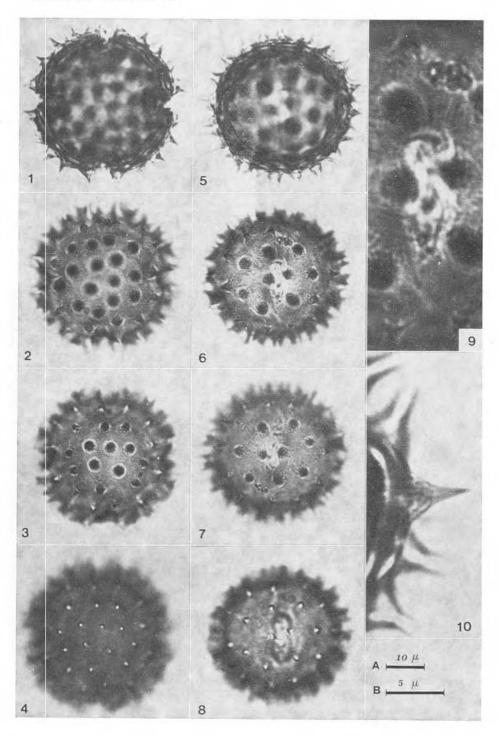
Calendula officinalis L. Erbario Palinologico Istituto Botanico Bologna n. 35 S. Silvestro (PE) - 14.3.1973

	$\overline{}$	· · ·		***	1			
Raggruppamento		monadi						
Simmetria	radio	simmetrici	<u>- </u>					
Polarità	isopo	lari						
Perimetro	vision	ne polare : subquadr	angolari	_				
retrimetro		ne equatoriale: circolar	i(17%),subcircolari(80%) od ellitrici(3	3)			
Forma	subob		P / E	0,96(0,79-1,05)	$\sigma = \pm 0.04$			
rorma	sfero	idali (97%)	F / E	0,90(0,79-1,03)	0 - 10,04			
7	tetra	colporati	NPC	445				
		fusiformi, ad apici mol-	Lunghezza(L-colpus)	23,7(20,0-30,0)μ	$\sigma = \pm 2,5$			
	colpi	to acuti e bordi sotti-	larghezza(E-colpus)	3,4(2,0-5,0)µ	$\sigma = \pm 1,4$			
		li ed ondulati	P/P-colpus	1,84(1,50-2,04)	$\sigma = \pm 0.14$			
			largh.mesocolpia	21,0(20,0-23,0)µ	$\sigma = \pm 1,0$			
Aperture		lolongati,a contorno	asse maggiore(P-os)	10,3(8,0-12,0)μ	$\sigma = \pm 0.9$			
	1	irregolarmente ellit-	asse minore (E-os)	5,0(2,0-7,5)μ	$\sigma = \pm 1.4$			
	1	tico-rettangolare o	P-colpus/P-os	2,40(1,81-3,50)	$\sigma = \pm 0,41$			
	ora	a forma di otto,con						
	1	margine talora legger-	E-colpus/E-os	1				
		mente ispessito.						
		•						
	echina	ata, finemente reticola-	spessore	5,5(4,8-6,5)μ	$\sigma = \pm 0.6$			
	ta tra	a le spinae	indice esina	0,12(0,10-0,15)	$\sigma = \pm 0.01$			
			altezza	4,7(3,0-6,0)µ	$\sigma = \pm 0,6$			
Esina	spina		base	4,9(3,0-8,0)µ	$\sigma = \pm 1, 1$			
	Spinae	e e	distanza	3 - 8µ				
			densità	$3 - 7/100\mu^2$				
Dimensioni	au 80	granuli	P	42,5(35,0-51,0)μ	$\sigma = \pm 2,5$			
Dimensioni	1 80 80	granuli	E	44,3(39,0-51,6)μ	$\sigma = \pm 2,5$			

Iconografia

Scala A: figg. 1-8 — Scala B: figg. 9, 10

Figg. 1-4: visione polare.


Figg. 5-8: visione equatoriale con apertura composta.

Figg. 9, 10: particolari — apertura composta (fig. 9); esina con spinae in

sezione ottica (fig. 10).

COMPOSITAE

Calendula officinalis L.

C. A. Accorsi Istituto Botanico dell'Università di Bologna

GENTIANACEAE

Centaurium erythraea Rafn Erbario Palinologico Istituto Botanico Bologna n. 45 Monte Gibbio (MO) m. 403 - 28.6.1974

		T			
Raggruppamento monadi					
Simmetria		radiosimmetrici			
Polarità		isopolari			
***************************************		visione polare : subt	riangolari o subquad	rangolari,goniotr	emi,con
Perimetro		i la	ti convessi		
		visione equatoriale: subc	ircolari (96%) o ell	ittici (4%)	
Forma	-	sferoidali (96%)	P / E	1,01(0,92-1,18)	$\sigma = \pm 0.06$
POLINA		subprolati (4%)	F / E	1,01(0,92-1,10)	0 - 10,00
		tricolporati (94%)	NPC	345	
		tetracolporati (6%)	NPC	445	
		rettangolari per 3/4 del-	Lunghezza(P-colpus)	25,1(23,9-29,3)μ	$\sigma = \pm 1, 1$
	colpi	la lunghezza o legger-	larghezza(E-colpus)	6,1(4,6-8,5)µ	$\sigma = \pm 1,0$
		mente fusiformi;	margine	0,8 - 1,0μ	
		margine ispessito;	P/P-colpus	1,20(1,15-1,26)	$\sigma = \pm 0.04$
		membrana colpale fine-	lato triang.polare	6,7(6,0-7,7)µ	$\sigma = \pm 0.5$
		mente scabrata.	indice area polare	0,22(0,19-0,27)	$\sigma = \pm 0.02$
Aperture			largh.mesocolpia	19,0(16,2-21,6)µ	
		lalongati (60%)	dimensioni medie	5,3 x 6,5μ	$\sigma = \pm 0.4$
	ora	lolongati (20%)		6,1 x 4,9μ	$\sigma = \pm 0.5$
		circolari (20%)		5,5u	$\sigma = \pm 0,2$
		contorno spesso irre-	margine	1,0 - 1,2μ	
		golare;	P-colpus/P-os	4,60(3,75-5,50)	$\sigma = \pm 0.4$
		margine ispessito	E-colpus/E-os	1	
		tectata;striata-debolmen-	spessore polare	3,0(2,3-3,5) μ	$\sigma = \pm 0.3$
		te reticolata nei meso	spessore equato-	2,5(2,3-3,1)µ	$\sigma = \pm 0.2$
		ed apocolpia;striata nel-	riale	2,3(2,3-3,1/μ	0 - 10,2
		le adiacenze dei colpi.	larghezza striae	< 1 µ	
		Omobrocata.Lirae incurva-		< 1 µ	
Esina		te soprattutto vicino ai	sex./nex.polare	2,0 - 2,5	
		colpi,disposte irregolar-	sex./nex.equator.	1,2 - 1,8	
		mente, spesso con brusche			
		deviazioni che originano	indice esina	0,09(0,08-0,11)	$\sigma = \pm 0.01$
		campi direzionali defini-	Indice estila	0,00(0,00 0,11)	20,01
		ti. Sexina decrescente			
		verso i colpi; nexina			
		costante			
Dimension	i	su 50 granuli	P	30,1(27,3-34,7)µ	
DIMENSION.	•	ou so granutt	E	29,9(27,0-32,3)μ	$\sigma = \pm 1.3$
			<u> </u>	~~, ~ (~, , o ~, ~, ~) µ	,5

Iconografia

Scala A: figg. 1-12 — Sacala B: figg. 13-15

Figg. 1-3: granulo tricolporato in visione polare.

Figg. 4-6: granulo tricolporato in visione equatoriale con mesocolpium.

Figg. 7-9: granulo tricolporato in visione equatoriale con apertura.


Figg. 10-12: granulo tetracolporato — visione polare (fig. 10); visione equatoriale con mesocolpium (fig. 11); visione equatoriale con

apertura (fig. 12).

Figg. 13-15: particolari — striatura nell'apocolpium (fig. 13); apertura composta (fig. 14); esina in sezione ottica (fig. 15).

GENTIANACEAE

Centaurium erythraea Rafn

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

GRAMINACEAE

Arundo plinii Turra Erbario Palinologico Istituto Botanico Bologna n. 86 O.B. (BO) - 17.9.1970

Raggrupp	amento	monadi					
Simmetria		radiosimmetrici(70%) o dorsoventrali per spostamento del poro(30%)					
Polarità		eteropolari					
		visione polare : tregolarmente circolari o leggermente tri-					
Perimetro		angolari					
		visione equatoriale: subcircolari(26%), ovati(70%) od ellittici(4%)					
Forma		sferoidalici (96%)	P/E	1,05 (0,90-1,16)	$\sigma = \pm 0.05$		
FOLMA		subprolatici (4%)			0 - 20,03		
		monoporati(anaporati)	NPC	134			
		situato al polo dista-					
		le (70%),					
		spostato distintamente					
		verso l'equatore (30%);					
		contorno circolare (80%)	diametro	[3,0 (2,3-4,5)] µ			
		contorno da subcircola-	dM (diam.magg.)	4,4 (3,9-5,2) μ	L		
		re ad ellittico (20%).	dm (diam.min.)	$3,5$ (2,5-4,0) μ			
	poro		dM/dm	1,32(1,05-2,08)	$\sigma = \pm 0,27$		
Aperture			largh.annulus	$2,6 (1,6-3,5) \mu$	$\sigma = \pm 0.4$		
		annulus distinto	sporgenza annulus	1,4 (0,8-2,0) μ			
			dM poro / largh.annulus		$\sigma = \pm 0.38$		
			(dMporo +2largh.annulus)	0,25(0,19-0,32)	$\sigma = \pm 0,03$		
			E				
		membrana porale a vol-					
		te(20%) con poche,di -			ŀ		
<u> </u>		stinte,granulazioni.					
Esina		tectata, distintamente	spessore	1,6 (1,1-2,0) μ	$\sigma = \pm 0, 2$		
		scabrata	sex./nex.	1 - 3			
			indice esina	0,05(0,03-0,06)	$\sigma = \pm 0,01$		
Dimensioni		su 70 granuli	P	34,9(30,8-39,5)μ			
		ou /o granuti	E	33,4(30,0-40,0)µ	$\sigma = \pm 2,0$		

Iconografia

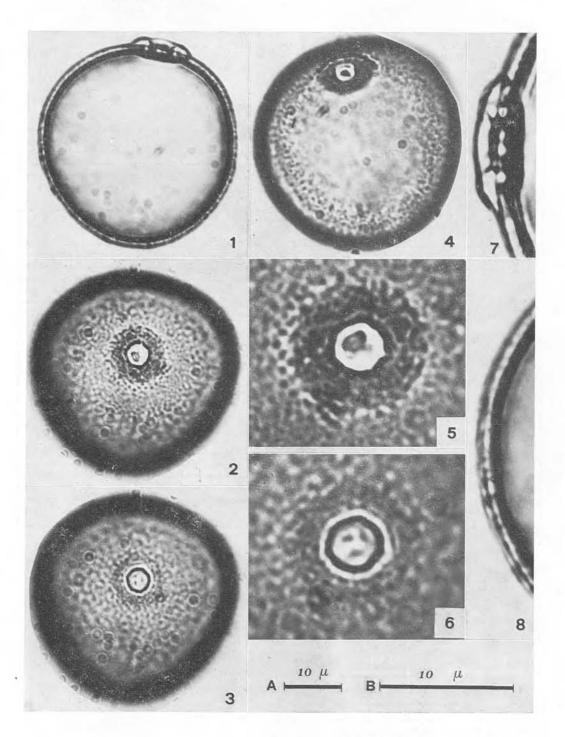

Scala A: figg. 1-4 — Scala B: figg. 5-8

Fig. 1: visione equatoriale. Figg. 2, 3: visione polare (distale). Fig. 4: visione intermedia.

Figg. 5-8: particolari — poro a due diversi fuochi (figg. 5, 6); poro in sezione ottica (fig. 7); esina in sezione ottica (fig. 8).

GRAMINACEAE

Arundo plinii Turra

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

LILIACEAE

Colchicum autumnale L. s.l. Erbario Palinologico Istituto Botanico Bologna n. 36 Prati di Tivo (TE) m. 1400 - 4.8.1973

Raggruppamento	monadi				
Simmetria	bilaterali				
Polarità	subisopolari (99%) o eteropolari (1%)				
	diporati : a forma di botte visione polare : triporati : a forma di botte tetraporati: a forma di botte				
Perímetro	diporati : piano-convessi visione equatoriale: triporati : subtriangolari tetraporati: subquadrangolari				
Forma	pseudo-oblatoidi (99%) pseudo-oblatici (1%)	P / E ₁	0,62 (0,50-0,73)	$\sigma = \pm 0.05$	
····	etero - E	E ₁ / E ₂	1,57 (1,35-2,00)	$\sigma = \pm 0.13$	
	diporati (95%)	NPC	234 , 244		
	triporati (4%)	NPC	32(?)4		
	tetraporati (1%)	NPC	42(?)4		
	ovali,a margini molto frastagliati,disposti,nei diporati , all'estremità dell'asse E ₁ ,oppure rara- mente, ambedue sulla fac-	asse maggiore	10,8 (7,3-16,2)μ	$\sigma = \pm 2,5$	
Aperture	pori cia distale (1%). Nei triporati e tetraporati,i pori ulteriori sembrano essere sulla faccia pros- simale,in posizione va- riabile	asse minore	8,4 (5,0-12,3)μ	$\sigma = \pm 2,0$	
	reticolata, omobrocata	spessore	2,4 (2,0~2,8)µ	$\sigma = \pm 0, 2$	
Esina		sex / nex	1 - 3		
Dorna		lumina	< 1 μ		
		muri	< 1 µ		
		P	36,9 (31,9~45,0)μ		
Dimensioni	su 50 granuli	E ₁	59,6 (54,1–68,4)μ 58,1 (31,9–45,1)μ		

I dati biometrici si riferiscono ai granuli diporati.

Iconografia

Scala A: figg. 1-6 — Scala B: figg. 7, 9 — Scala C: fig. 8

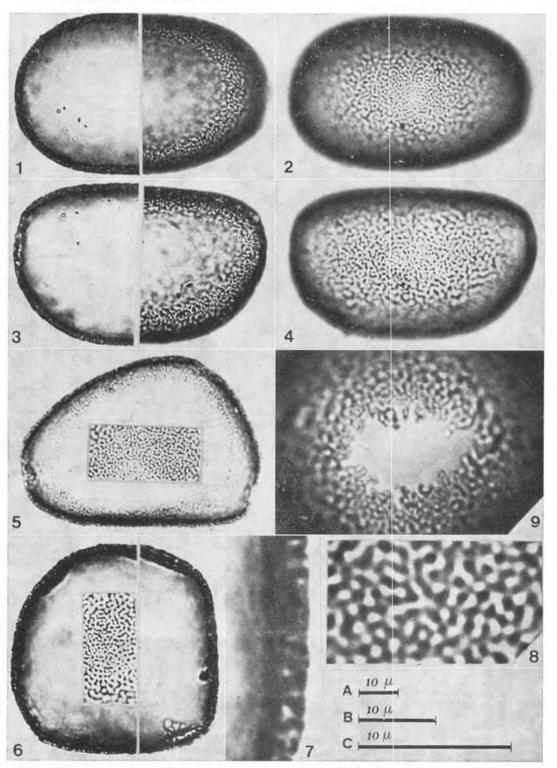

Figg. 14: granulo diporato — visione polare (figg. 1, 2); visione equatoriale (figg. 3, 4).

Fig. 5 : granulo triporato.Fig. 6 : granulo tetraporato.

Figg. 7-9: particolari — esina in sezione ottica (fig. 7); reticolo (fig. 8); poro (fig. 9).

LILIACEAE

Colchicum autumnale L. s.l.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

PLANTAGINACEAE

Plantago lanceolata L.

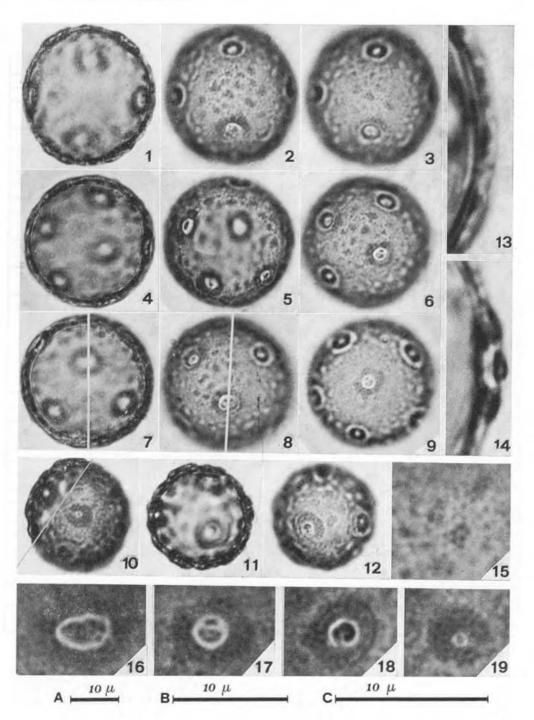
Erbario Palinologico Istituto Botanico Bologna n. 81

BO - 15.7.1975

Raggruppamento		monadi				
Simmetria		radiosimmetrici				
Polarità		apolari				
D ' +	_	visione isoassiale :circolari				
Perimetro		visione eteroassiale:da circolari ad ellittici				
		suboblati• (2%)				
Forma		sferoidali• (36%)	D _v /D _o	1,01(0,85-1,11)	$\sigma = \pm 0.06$	
		subprolati• (62%)	V O			
			DM/Dm	1,05(1,00-1,17)	$\sigma = \pm 0.03$	
		periporati	NPC	764		
		in genere reg.dis-	numero pori	11(7-15)		
		tribuiti,evidenti, legg.sporgenti	distanza	6,5 (1,0 -11,8)µ	a = +1.8	
			tra i pori			
1		da circolari ad ellittici	dM	2,6 (1,2 - 5,5)μ		
			dm	$2,3 (1,0 - 3,5)\mu$		
			dM/dm	1,14(1,00-1,75)	$\sigma = \pm 0,14$	
		annulus prosente	larghezza	2,1 (1,2 - 4,0)µ	$\sigma = \pm 0,5$	
		annulus presente, non omogeneo	dM poro	1,23(0,54-2,60)	$\sigma = \pm 0.31$	
Aperture	pori		largh.annulus	1,23(0,34 2,00)	0 ±0,51	
		membrana porale con				
		opercolo centrale,				
		compatto(80%),fram-	dM opercolo	1,5 $(0,5 - 4,0)\mu$	$\sigma = \pm 0,6$	
		mentato in 2-4 parti	•			
		(20%)				
		tectata,verrucata, granulata;ondulata in sez.ottica	spess.esina	$1,8 (1,2 - 2,3) \mu$		
				$1,2 (0,8 - 1,5)\mu$		
				0,6 (0,4 - 0,9)µ		
			sex./nex.	2,17(1,00-3,00)	$\sigma = \pm 0.55$	
				0,07(0,05-0,11)	$\sigma = \pm 0.01$	
		verrucaeevidenti,a contorno irregolare	dM	2,7 (1,0 - 5,5)μ		
Esina			dm	1,9 (1,0 - 4,0)μ		
			dM/dm	1,48(1,00-4,00)	$\sigma = \pm 0.48$	
			altezza	0,5 (0,2 - 1,0)μ	$\sigma = \pm 0,2$	
			distanza	1,5 (0,5 - 3,2)μ	$\sigma = \pm 0,6$	
			densità	10 (5-18)/100μ ²	•	
		granula evidenti	d	< 1 µ		
Dimensioni		su 50 granuli	Do	24,4(16,0-31,5)µ	$\sigma = \pm 3,5$	
		July 30 Brands	$D_{\mathbf{v}}$	24,0(17,0-30,0)µ	$\sigma = \pm 3,0$	
		<u> </u>			l	

Iconografia

Scala A: figg. 1-12 — Scala B: figg. 15-19 — Scala C: figg. 13, 14


Figg. 1-3: visione eteroassiale. Figg. 4-8: visioni isoassiali. Fig. 9 : posizione intermedia.

Figg. 10-12: altro granulo — visione eteroassiale (fig. 10); visione isoassiale (figg. 11, 12).

Figg. 13-19: particolari — esina in sez. ottica (fig. 13); poro con operculum in sez. ottica (fig. 14); verrucae e granula (fig. 15); pori (figg. 16-19).

PLANTAGINACEAE

Plantago lanceolata L.

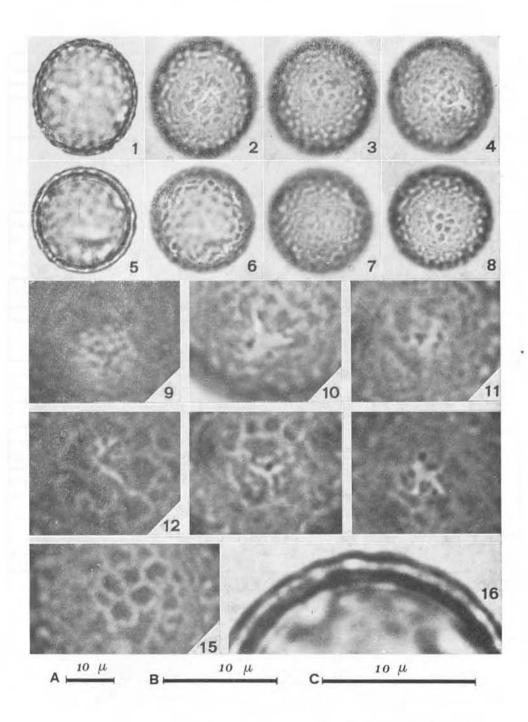
C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

PLANTAGINACEAE

Plantago major L. Erbario Palinologico Istituto Botanico Bologna n. 83 O.B. (BO) - 14.7.1975

Raggruppamento		monadi			***************************************		
Simmetria		radiosimmetrici					
Polarità		apolari					
- 1		visione isoassiale :circolari					
Perimetro		visione eteroassiale:da circolari ad ellittici					
		suboblati• (8%)					
Forma		sferoidali• (84%)	מ/ מ	1,02(0,81-1,17)	$\sigma = \pm 0, 10$		
		subprolati• (8%)	D _v /D _o	1,02(0,01 1,1/)	0 - 20,10		
		Subplotaci (0%)	DM/Dm	1 10/1 00-1 22	= +0.05		
			NPC	1,10(1,00-1,22)	$\sigma = \pm 0.05$		
	l	periporati		764			
			numero pori	7 (5 - 9)			
		poco evidenti, non	distanza	7,9 (3,0 -14,0)µ	$\sigma = +2.5$		
		sporgenti	tra i pori				
		contorno frasta -	dM	3, 5 (1,8 - 6,2)μ	$\sigma = \pm 0,9$		
i		gliato,raramente	dm	$2,6 (1,0 - 5,0)\mu$	$\sigma = \pm 0,7$		
Aperture	pori	da circolare ad	dM/dm	1,40(1,00-3,00)	$\sigma = \pm 0,40$		
	1	ellittico					
		annulus assente					
9		membrana porale					
		congranula dispos-					
		ti su tutta la su-	d granula	< 1,2 μ			
i		perf. o,in piccolo	0	\			
		numero, solo sul					
		margine		1			
		tectata, verrucata, granulata; legg.on- dulata in sez.ot- tica	spess.esina	$1,6 (1,2-2,0)\mu$	$\sigma = \pm 0.2$		
			spess.esina	$1,0 (0,7-1,2)\mu$			
				$0,5 (0,4 - 0,8)\mu$			
			sex./nex.	2,00(1,00-2,75)			
					$\sigma = \pm 0.24$		
77 *			indice esina		$\sigma = \pm 0.01$		
Esina		verrucaeevidenti, a contorno irrego- lare	dM	$2,0 (0,8 - 5,0)\mu$			
			dm	$1,4 (0,6-3,0)\mu$			
			dM/dm		$\sigma = \pm 0,52$		
			altezza	$0,4 (0,1 - 0,8)\mu$	$\sigma = \pm 0, 2$		
		ITALE	distanza	1,0 (0,5 - 1,8)μ	$\sigma = \pm 0,3$		
			densità	27(15-40)/100μ ²			
		granula poco visi- bili	d granula	< 0,8 µ			
Dimensioni		su 50 granuli	D _V	19,7(16,0-24,0)μ	σ'=±1,8		
		•	Do	20,1(17,0-24,0)μ	$\sigma = \pm 1,7$		

Iconografia


Scala A: figg. 1-8 — Sacala B: figg. 9-15 — Scala C: fig. 16

Figg. 14: visione eteroassiale. Figg. 5-8: visione isoassiale.

Figg. 9-16: particolari — pori (figg. 9-14); verrucae (fig. 15); esina in sezione ottica (fig. 16).

PLANTAGINACEAE

Plantago major L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

PLANTAGINACEAE

Plantago media L. Erbario Palinologico Istituto Botanico Bologna n. 82 Casaglia (BO) - 17.7.1975

Signmetria Tradiosimmetrici(83%), bilaterali Orasimmetrici(12%)	Passarumasma		i				
Polarità visione isoassiale visione eteroassiale:da circolari visione eteroassiale:da circolari ad ellittici(96%),ova—ti(4%)							
Perimetro visione isoassiale circolari visione eteroassiale cida circolari ad ellittici(96%),ova—ti(4%)							
Perimetro visione eteroassiale:da circolari ad ellittici(96%),ovati(4%)	rotatita			·circolari		, , , , , , , , , , , , , , , , , , , ,	
Suboblati* (10%) Suboblati* (10%) Suboblati* (10%) Suboblati* (10%) Sercidali* (70%) Subprolati* (18%) DM/Dm 1,11(1,00-1,41) σ = ±0,08	Parimetro				ri ad ellittici(96%)	ova-	
Forma Solati (2%) suboblati (10%) sferoidali (70%) sferoidali (70%) sferoidali (70%) sferoidali (18%) DM/Dm 1,11(1,00-1,41) 0 = ±0,08	rerimetro		Visione eceroassiai		if an efficiency	,014	
Periporati NPC 764	Forma		suboblati• (10%) sferoidali• (70%)	· · · · · · · · · · · · · · · · · · ·	1,02(0,71-1,30)	σ = ±0,12	
Aperture pori irreg.distribuiti, numero pori 10 (7-15) evidenti,non sporgenti da circolari ad ellittici; margine poco netto annulus assente membrana porale coperta da granulii dectata,verrucata, granulata; molto ondulata in sez. ottica spess.exina spess.exina spess.exina spess.exina spess.exina ottica ottica spess.exina ottica ottica spess.exina ottica ottica ottica spess.exina ottica ottic				DM/Dm	1,11(1,00-1,41)	$\sigma = \pm 0.08$	
Aperture pori			periporati	NPC			
Aperture pori		1	irreg.distribuiti,	numero pori	10 (7 - 15)		
ellittici; dm 3,9 (2,5 - 5,5) μ σ = ±0,7 dM/dm 1,25 (1,00-2,00) σ = ±0,72 dM/dm 1,25 (1,00-2,00) σ = ±0,22 dM/dm 1,5 μ σ = ±0,2 σ = ±0,4 σ = ±0,4 σ = ±0,5			genti		7,5 (4,0 -15,0) μ		
	Aperture po	ori	da circolari ad	dM	4,8 (3,0 - 6,5) μ		
annulus assente membrana porale coperta da granuli (d) <1,5 μ σ = ±0,2 spess.esina 2,0 (1,5 - 2,8) μ σ = ±0,2 spess.sexina 1,4 (1,0 - 1,9) μ σ = ±0,2 spess.nexina 0,7 (0,5 - 0,9) μ σ = ±0,1 sex./nex. 2,02(1,50-3,00) σ = ±0,1 sex./nex. 2,02(1,50-3,00) σ = ±0,01 indice esina 0,09(0,06-0,12) σ = ±0,01 dM 3,7 (1,2 - 8,0) μ σ = ±1,4 verrucaemolto evidenti, a contorno irregolare dM/dm 2,3 (1,2 - 3,5) μ σ = ±0,6 dM/dm 1,60(1,00-3,33) σ = ±0,58 altezza 0,6 (0,3 - 1,0) μ σ = ±0,2 distanza 1,5 (0,5 - 2,0) μ σ = ±0,3 densità 8 (5 - 15)/100μ² granula evidenti d <1 μ D _V 23,7(15,0-30,0) μ σ = ±2,8 D _O 23,0(20,0-27,0) μ σ = ±2,4 densità σ =			ellittici;				
membrana porale coperta da granu- 11		ı	margine poco netto	dM/dm	1,25(1,00-2,00)	$\sigma = \pm 0,22$	
coperta da granu- 1i			annulus assente				
Esina $ \begin{array}{c} tectata, verrucata, \\ granulata; molto \\ ondulata in sez. \\ ottica \\ \hline \\ verrucae molto evidenti, a contorno irregolare \\ \hline \\ Dimensioni \\ \hline \end{array} \begin{array}{c} tectata, verrucata, \\ granulata; molto \\ ondulata in sez. \\ ottica \\ \hline \\ spess.sexina \\ spess.sexina \\ 0,7 (0,5-0,9) \mu \sigma = \pm 0,2 \\ spess.nexina 0,7 (0,5-0,9) \mu \sigma = \pm 0,1 \\ sex./nex. 2,02(1,50-3,00) \sigma = \pm 0,2 \\ indice esina 0,09(0,06-0,12) \sigma = \pm 0,01 \\ dM & 3,7 (1,2-8,0) \mu \sigma = \pm 0,6 \\ dM/dm & 1,60(1,00-3,33) \sigma = \pm 0,58 \\ altezza & 0,6 (0,3-1,0) \mu \sigma = \pm 0,3 \\ densità & 8 (5-15)/100\mu^2 \\ granula evidenti & d & < 1 \mu \\ \hline \\ D_V & 23,7(15,0-30,0) \mu \sigma = \pm 2,8 \\ \hline \\ D_O & 23,0(20,0-27,0) \mu \sigma = \pm 2,4 \\ \hline \end{array} $			coperta da granu-	granuli (d)	<1, 5 μ		
Esina $ \begin{array}{c} & \text{granulata;molto} \\ & \text{ondulata in sez.} \\ & \text{ottica} \\ & \text{ottica} \\ & \text{verrucaemolto evidenti, a contorno} \\ & \text{irregolare} \\ & \text{pranulata;molto} \\ & \text{ottica} $						$\sigma = \pm 0,2$	
Esina $ \begin{array}{c} \text{granulata;molto} \\ \text{ondulata in sez.} \\ \text{ottica} \\ \\ \text$			granulata; molto	spess.sexina	1,4 (1,0 - 1,9) μ	$\sigma = \pm 0, 2$	
Esina $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						$\sigma = \pm 0,1$	
Esina $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						$\sigma = \pm 0,21$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pains		ottica	indice esina	0,09(0,06-0,12)	$\sigma = \pm 0,01$	
$\begin{array}{c} \text{denti,a contorno} \\ \text{irregolare} \\ \text{prescription} \\ \text{denti,a contorno} \\ \text{irregolare} \\ \text{distanza} \\ \text{distanza} \\ \text{distanza} \\ \text{do.} \\ \text{do.} \\ \text{do.} \\ \text{do.} \\ \text{densita} \\ densit$	ESINA			dM	3,7 (1,2 - 8,0) μ	$\sigma = \pm 1,4$	
$\begin{array}{c} \text{irregolare} & \text{altezza} & 0.6 & (0.3 - 1.0) \; \mu \sigma = \pm 0.2 \\ \text{distanza} & 1.5 & (0.5 - 2.0) \; \mu \sigma = \pm 0.3 \\ \text{densità} & 8 & (5 - 15)/100\mu^2 \\ \text{granula evidenti} & \text{d} & < 1 \; \mu \\ \\ \text{Dimensioni} & \text{su 50 granuli} & D_{\text{V}} & 23.7(15.0-30.0) \; \mu \sigma = \pm 2.8 \\ \\ D_{\text{O}} & 23.0(20.0-27.0) \; \mu \sigma = \pm 2.4 \\ \end{array}$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				dM/dm	1,60(1,00-3,33)	1	
$\frac{densita}{densita} = \frac{8 (5-15)/100\mu^2}{8 ranula \ evidenti}$ $\frac{densita}{d} = \frac{8 (5-15)/100\mu^2}{23,7(15,0-30,0) \ \mu}$ $\frac{densita}{densita} = \frac{9 (3-15)/100\mu^2}{23,7(15,0-30,0) \ \mu}$			irregolare	altezza	0,6 (0,3 - 1,0) μ		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				distanza	1,5 (0,5 - 2,0) μ	$\sigma = \pm 0,3$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				densità	8 (5 - 15)/100μ ²		
Dimensioni su 50 granuli D_0 23,0(20,0-27,0) μ $\sigma = \pm 2,4$			granula evidenti	đ			
D_0 23,0(20,0-27,0) μ $\sigma = \pm 2,4$			50 7:	D _v	23,7(15,0-30,0) μ	$\sigma = \pm 2,8$	
I dati si riferiscono ai granuli radiosimmetrici.				Do		$\sigma = \pm 2,4$	
	l dati si riteriscono ai granuli radiosimmetrici.						

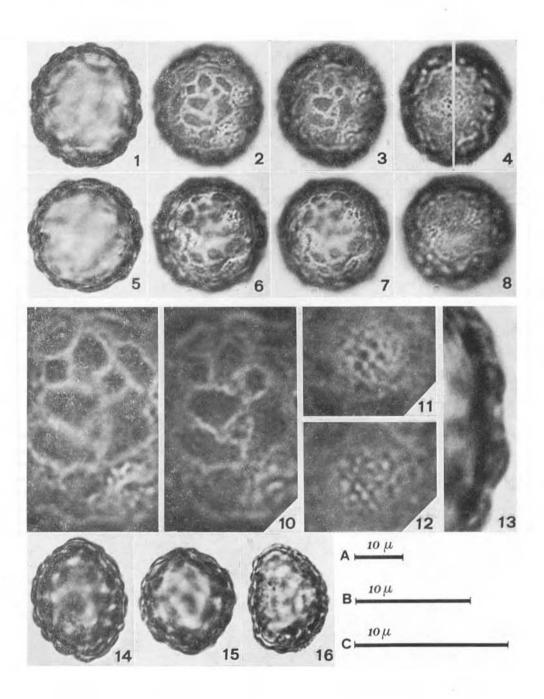
Iconografia

Scala A: figg. 1-8, 14-16 — Scala B: figg. 9-12 — Scala C: fig. 13

Figg. 1-8: granulo radiosimmetrico — visione eteroassiale (figg. 1-4);

visione isoassiale (figg. 5-8).

Figg. 9-13: particolari — verrucae a due fuochi successivi (figg. 9, 10); poro a due fuochi successivi (figg. 11, 12); esina in sezione


ottica (fig. 13).

Figg. 14-15: granulo bilaterale in due posizioni diverse.

Fig. 16: altro granulo bilaterale.

PLANTAGINACEAE

Plantago media L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

RANUNCULACEAE

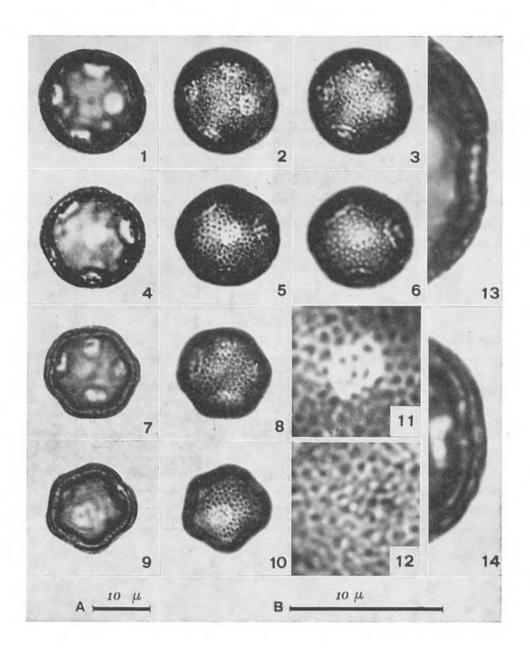
Thalictrum flavum L. Erbario Palinologico Istituto Botanico Bologna n. 85 Piumazzo (MO) - 25.6.1975

Paggrupp	omonto	monadi				
Raggruppamento Simmetria		radiosimmetrici				
Polarità		apolari	L			
Perimetro		circolari (75%)	\ maliconali	(259)		
Forma	0	sferici• (75%)		(25%) (25%)		
Forma						
		periporati	NPC	764		
			numero pori	9 (7-11)		
			distanza tra i pori	2 – 9 μ		
		circolari(29%)		4,1 (2,3-5,5) μ	$\sigma = \pm 0.8$	
	l	da subcircola-	dM(diam.magg.)	4,8 (3,0-7,0) μ	$\sigma = \pm 0.9$	
		ri ad ellitti-	dm(diam.min.)	$3,6(2,0-5,5)$ μ	$\sigma = \pm 0.8$	
	pori	ci(71%)	dM/dm	1,33(1,08-2,00)	$\sigma = \pm 0,22$	
A		margine non				
Aperture		sempre ben				
		definito;				
		annulus assen-				
		te				
		membrana pora-	granuli mem -			
		le cosparsa di	brana poro	€ 1 μ]	
		granuli	•			
Esina			spess.esina		$\sigma = \pm 0,2$	
		tectata.	spess.sexina		$\sigma = \pm 0.3$	
		distintamente	sex./nex.	1 - 2		
		scabrata	indice esina (esina/D)	0,10(0,08-0,13)	$\sigma = \pm 0,01$	
Dimensioni		su 50 granuli	D	17,2(15,0-21,0)μ	$\sigma = \pm 1,3$	

Iconografia

Scala A: figg. 1-10 — Scala B: figg. 11-14

Figg. 1-6 : granulo sferico • in due diverse posizioni ed a vari fuochi.


Figg. 7, 8: granulo poliedrico.

Figg. 9-10: altro granulo poliedrico.

Figg. 11-14: particolari — poro (figg. 11); esina scabrata (fig. 12); poro in sezione ottica (fig. 13); esina in sezione ottica (fig. 14).

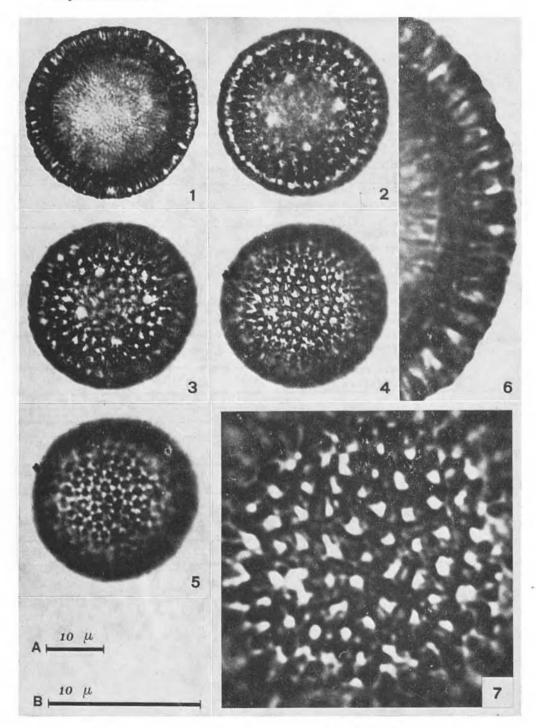
RANUNCULACEAE

Thalictrum flavum L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

Daphne laureola L. Erbario Palinologico Istituto Botanico Bologna n. 79 Traserra (BO) - 29.3.1975

Raggruppamento		monadi				
Simmetria		radiosimmetrici				
Polarità		apolari				
Perimetro		visione isoassiale :circolari visione eteroassiale:circolari(44%),subcircolari(54%), ovali(2%)				
Forma		sferici• (44%) sferoidali•(54%) subprolati• (2%)	D _v /D _o	1,05(1,00-1,19)	σ = ±0,05	
		periporati	NPC	764		
Aperture	pori	a volte difficil- mente visibili;		14 -20 6,1 (3,0 -12,0)μ	$\sigma = \pm 1,4$	
		contorno netto, irregolare,spes- so con tre o quattro lobi	diametro maggiore	2,4 (1,8 - 3,5)µ	$\sigma = \pm 0,5$	
Esina		subtectata,reti- colata	spess.esina spess.sexina sex./nex. indice esina (esina/D _O)	$\begin{array}{c} 4,5 & (3,8-5,2)\mu \\ 3,2 & (2,5-4,0)\mu \\ 2-5 \\ 0,14 & (0,12-0,19) \end{array}$	$\sigma = \pm 0,3$	
		muri simplibacu- lati	largh.muri	1,0 (0,5 - 1,5)µ	$\sigma = \pm 0, 2$	
		lumina irreg.po- ligonali	lumina	1,2 (0,5 - 2,2)μ	$\sigma = \pm 0,3$	
Dimensioni		su 50 granuli	D _V (DM) D _O (Dm)	32,6(26,0-38,0)μ 31,0(26,0-36,0)μ		


Iconografia

Scala A: figg. 1-5 — Scala B: figg. 6, 7

Figg. 1-5: granulo sferoidale • a vari fuochi.

Figg. 6-7: particolari — esina in sezione ottica (fig. 6); reticulum (fig. 7).

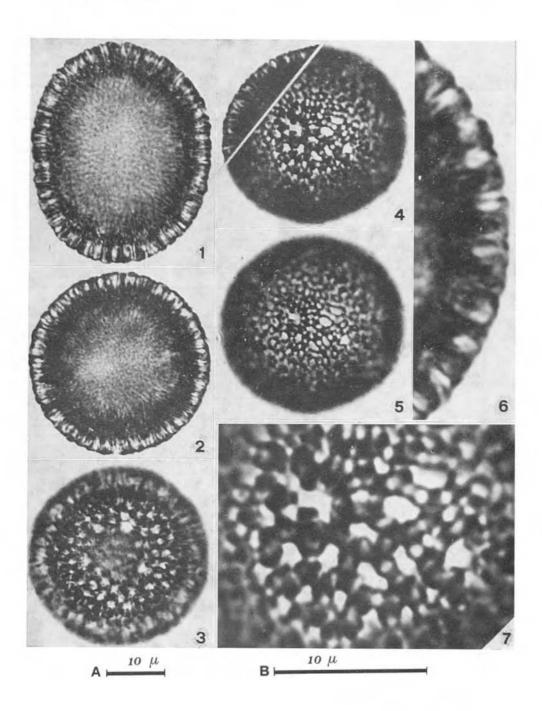
Daphne laureola L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

Daphne striata L. Erbario Palinologico Istituto Botanico Bologna n. 80 Val Malenco (SO) - 27.6.1971

Raggruppamento		monadi ·				
Simmetria		radiosimmetrici				
Polarità		apolari				
		visione isoassia				
Perimetro	0	visione eteroas:	siale:circola	ri(68%),subcircola	ri(26%)	
			ovali(6	()		
Forma		sferici• (68%) sferoidali•(26%) suboblati•(2%) subprolati•(4%)	D _v /D _o	0,98(0,84-1,22)	σ = ±0,06	
			DM/Dm	1,04(1,00-1,22)	$\sigma = \pm 0.04$	
		periporati	NPC	764		
	pori	difficilmente visibili	numero pori	10 - 20		
Aperture			distanza tra i pori	12,4(5,0-21,0) μ	$\sigma = \pm 5,0$	
		contorno netto, irregolare	diam.magg.	3,1(2,0- 4,0) μ	$\sigma = \pm 0,6$	
			spess.esina	4,4(3,5-5,5) μ	$\sigma = \pm 0.4$	
		subtectata,re-	spess.sexina 3,2(2,5-4,0 sex./nex, 2 - 6	3,2(2,5-4,0) μ	$\sigma = \pm 0.3$	
		ticolata	sex./nex.			
Esina			indice esina (esina/D _O)	0,13(0,10-0,17)	$\sigma = \pm 0,02$	
		muri simpliba- culati	largh.muri	1,1(0,8 -1,5)μ	$\sigma = \pm 0,2$	
		lumina irreg. poligonali	lumina (d)	1,6(0,5 -3,5)μ	$\sigma = \pm 0,5$	
Dimensioni		FO 1.	${ t D_{f v}}$	35,9(31,2 ₇ 41,0)µ	$\sigma = \pm 2,4$	
		su 50 granuli	D _o	35,0(30,0-41,0)μ	$\sigma = \pm 3,1$	

Iconografia


Scala A: figg. 1-5 — Scala B: figg. 6, 7

Figg. 1-3: granulo subprolato • visione eteroassiale (fig. 1); visione iso-

assiale (figg. 2, 3). Figg. 4-5: granulo sferoidale •

Figg. 6, 7: particolari — esina in sezione ottica (fig. 6); reticulum (fig. 7).

Daphne striata L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

GUTTIFERAE

Hypericum perforatum L.

Erbario Palinologico Istituto Botanico Bologna n. 37 Prati di Tivo (TE) m. 1400 - 4.8.1973

Raggruppa	manta	moradi					
Simmetria		radiosimmetrici					
Polarità	1	isopolari(70%) - eteropolari(30%)					
TOTALICA	visione polare ; subtriangolari, pticotremi, con i lati concavi e g						
Perimetro			i (limitatamente al po		ii augoii		
retimetic	,						
		visione equatoriale: subcircolari(5%) od ellittici(95%) prolato-sferoidali(5%)					
Forma		subprolati(27%),subprolatici(10%	1 (S) P/E	1.39(1.09-1.87)	g = ±0.16		
rorma		prolati(38%), prolatici(20%)	6) I / E	1,35(1,05-1,07)	0 = ±0,10		
	T	tricolpati (7%)	NPC	343			
	1	tricolporati (43%)	NPC	345			
		tricolporoidati (20%)	NPC NPC	345			
	i		NPC	345			
	l	tricolporo-parasincolpati(30%)	Lunghezza (P-colpus)	20,5(17,0-24,0)µ			
	l	nei tricolporati: ± ristretti nella zona o=			$\sigma = \pm 1.2$		
		f ristretti nella zona o=	Targhezza(E-colpus)	3,9(0,5-6,0)µ	$\sigma = \pm 0.09$		
			P/P-colpus	1,25(1,03-1,41)			
		nei tricolpati, tricolporoidati:	lato triang.polare	4,4(3,0-6,0)µ	$\sigma = \pm 0.7$		
		a clessidra	indice polare	0,21(0,17-0,27)	$\sigma = \pm 0.03$		
Aperture	corbi	nei tricolporo-parasincolpati:	Lunghezza(P-colpus)	18,4(15,4-20,0)µ			
		confluenti,ad un polo,con	larghezza(E-colpus)	3,9(0,5-6,0)µ	$\sigma = \pm 1, 2$		
		colpi trasversali deli=	P/P-colpus	1,36(1,23-1,60)	$\sigma = \pm 0, 10$		
		mitanti un triangolo po=	Lunghezza colpus				
		lare più ampio del tipi=	trasversale	11,1(8,9-14,0)µ	$\sigma = \pm 1.8$		
		co					
		margine ispessito	margine	0,8(0,5-1,0)µ	$\sigma = \pm 0,2$		
	ora		larghezza mesocolpia		$\sigma = \pm 0,7$		
		lalongati,da ovali a	asse minore(P-os)	2,8(0,5-5,5)μ	$\sigma = \pm 1,4$		
		strettamente ellittici,	asse maggiore(E-os)	3,4(0,5-7,7)µ	$\sigma = \pm 1.8$		
		contorno in genere non	P-colpus/P-os	10,09(3,10-22,0)			
		definito	E-colpus/E-os	0,78(0,52-1,00)	$\sigma = \pm 0,18$		
Esina			spessore polare	2,0(1,5 - 2,8)µ	$\sigma = \pm 0.2$		
			spessore equatoriale	1,4(1,0-2,0)µ	$\sigma = \pm 0.3$		
		finemente soprareticolata,	sex./nex.	0,93(0,80-1,00)	$\sigma = \pm 0.07$		
		omobrocata	indice esina	0,08(0,07-0,11)	$\sigma = \pm 0.01$		
			lumina	< 1 µ			
			muri	< 1 µ			
Dimensioni		au 150 aranuli	P	26,2(22,0-33,0)µ	$\sigma = \pm 1.8$		
		su 150 granuli	E	18,9(14,0-24,0)µ	$\sigma = \pm 2,0$		

Iconografia

S 51a

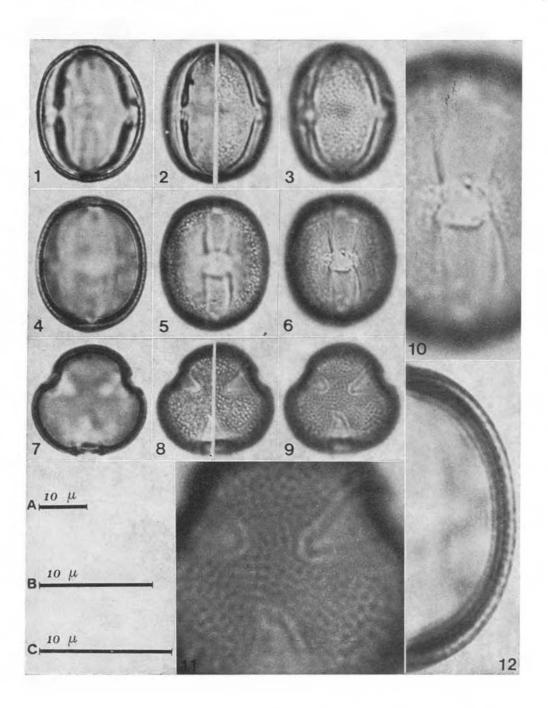
Scala A: figg. 1-9 — Scala B: figg. 10, 12 — Scala C: fig. 11

Figg. 1-9: granulo tricolporato — visione equatoriale con mesocolpium (figg. 1-3); visione equatoriale con apertura composta (figg. 4-6); visione polare (figg. 7-9).

Figg. 10-12: particolari — apertura composta (fig. 10); reticolo (fig. 11); esina in sezione ottica (fig. 12).

S 51b

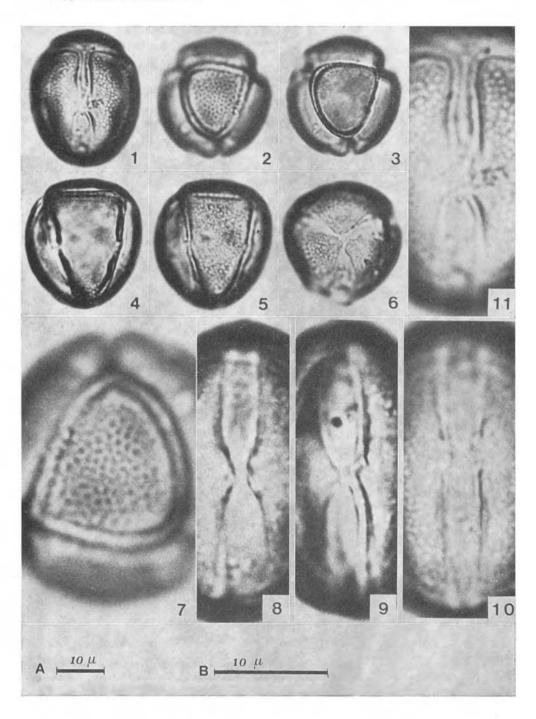
Scala A: figg. 1-6 — Scala B: figg. 7-11


Figg. 1-3: granulo tricolporo-parasincolpato — visione equatoriale con apertura composta (fig. 1); polo atipico (figg. 2, 3).

Figg. 4-6: granulo tricolporo-parasincolpato — visione equatoriale con mesocolpium (figg. 4, 5); confluenza di un colpus longitudinale con due colpi trasversali ad un vertice del triangolo polare atipico (fig. 6).

Figg. 7-11: particolari — reticolo nel polo atipico (fig. 7); colpi a clessidra (figg. 8-10); particolare della fig. 1 (fig. 11).

GUTTIFERAE


Hypericum perforatum L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

GUTTIFERAE

Hypericum perforatum L.

C. A. Accorsi e L. Forlani Istituto Botanico dell'Università di Bologna

GLOSSARIO (App. I)

- area polare (polar area) termine usato per indicare, nei granuli radiosimmetrici, quella zona paragonabile all'area polare di un globo (cioé l'area compresa rispettivamente tra i poli ed i circoli artici ed antartici) (Erdtman G., 1971).
- area polare (polar area) zona del granulo situata a latitudini più alte di tutte le aperture o dei loro annuli o margini (corrisponde all'apocolpium o all'apoporium) (Faegri K. and Iversen J., 1964).
- * circolare (circular) detto di perimetro a forma di cerchio, avente una unico diametro (tale termine viene utilizzato anche quando una parte, ≤ 30%, dei perimetri considerati, presenta differenze minime di dimensioni, tali che il loro rapporto sia compreso tra 0,95-1,05).
- * D; Diametro (D; Diameter) termine usato per indicare il diametro nei granuli radiosimmetrici apolari aventi dimensioni uguali (tale termine viene usato anche quando una parte, ≤ 30%, dei grandi esaminati, presenta differenze minime di dimensioni, tali che Dv/Do sia compreso tra 0,95-1,05).
 - DM; Diametro maggiore (longest diameter) termine usato per indicare la dimensione maggiore in granuli apolari non isodiametrici.
- * Dm; Diametro minore (shorter diameter) termine usato per indicare la dimensione minore in granuli apolari non isodiametrici.
- * d; dimensione o diametro (size or diameter) termine usato per indicare le dimensioni di una struttura pollinica (es. apertura, elemento sculturale) isodiametrica.
- * dM; dimensione o diametro maggiore (longest size or diameter) termine indicante la dimensione maggiore di una struttura pollinica (es. apertura, elemento sculturale).
- * dm; dimensione o diametro minore (shorter size or diameter) termine indicante la dimensione minore di una struttura pollinica (es. apertura, elemento sculturale).
- * Do; diametro orizzontale (horizontal diameter) termine usato nella descrizione dei granuli radiosimmetrici, apolari non isodiametrici, per indicare le 2 dimensioni uguali.
- * Dv; diametro verticale (vertical diameter) termine usato nella descrizione dei granuli radiosimmetrici, apolari, non isodiametrici, per indicare la dimensione diversa.
- * E-colpus termine usato nella descrizione di un colpus, per indicarne la dimensione orientata secondo la direzione dell'asse equatoriale E del granulo.

- * ellittico (elliptic) detto di perimetro a forma di ellisse, in cui il rapporto tra i due assi è > di 8/7 (> 1,14) o < di 7/8 (< 0,88).
- * etero-E detto di granulo bilaterale, polare, avente il rapporto E_1/E_2 compreso tra 8/6-8/4 (1,33-2,00).
 - granulo (granule) vedi lat. granulum.
 - indice area polare (polar area index) rapporto tra la maggiore distanza tra gli apici di due colpi ed il diametro equatoriale E.
- * I.C.; indice di concavità (C.I.; concavity's index) termine usato nella descrizione di granuli bilaterali, subisopolari o eteropolari, concavo convessi in visione equatoriale; esso viene espresso dalla distanza tra il polo prossimale e la linea immaginaria che unisce i due estremi incurvati del granulo (Nayar B.K. and Devis S., 1963, modificato).
 - indice esina; lat. index esinae rapporto tra lo spessore dell'esina ed il diametro equatoriale E dei granuli polari (o il diametro orizzontale Do dei granuli apolari).
- * oblatico (oblatic) termine usato per indicare la forma di un granulo radiosimmetrico, eteropolare, che se fosse isopolare, sarebbe oblato.
- * oblato (oblate •) termine usato per indicare la forma di un granulo radiosimmetrico, apolare, avente il rapporto Dv/Do compreso tra 6/8-8/7 (0,75-0,88).
- * oblato-sferoidale (oblate-spheroidal •) termine usato per indicare la forma di un granulo radiosimmetrico, apolare, avente il rapporto Dv/Do compreso tra 7/8 e 8/8 (0,88-1,00).
 - oblungo (oblung) detto di perimetro che differisce da quello ellittico per avere i lati lunghi quasi paralleli. (Nayar B. K. and Devis S., 1963, modificato).
- * ovale (oval) detto di perimetro ellittico in cui il rapporto tra i due assi è compreso tra 8/7 e 8/6 (1,4-1,33) o tra 6/8 e 7/8 (0,75-0,88).
 - Ovato (ovate) detto di perimetro che differisce da quello ellittico per avere un estremo più ristretto dell'altro (Nayar B.K. and Devis S., 1965, modificato).
- * P-colpus termine usato nella descrizione di un colpus, per indicarne la dimensione orientata secondo la direzione dell'asse polare P del granulo.
- * peretero-E detto di granulo bilaterale, polare, avente il rapporto $E_1/E_2>$ di 8/4~(>2.00).
- * peroblato (peroblate •) termine usato per indicare la forma di un granulo radiosimmetrico, apolare, avente il rapporto Dv/Do < di 4/8 (< 0.50).

- * perprolato (perprolate •) termine usato per indicare la forma di un granulo radiosimmetrico, apolare, avente il rapporto Dv/Do > di 8/4 (> 2,00).
 - piriforme (pear-shaped) detto di perimetro che richiama la forma di una pera.
- * P-os termine usato nella descrizione di un'apertura interna (os), per indicarne il diametro orientato secondo le direzione dell'asse polare P del granulo.
- * prolato (prolate •) termine usato per indicare la forma di un granulo bilaterale, apolare, avente il rapporto Dv/Do compreso tra 8/6 e 8/4 (1.33-2.00).
- * prolato-sferoidale (prolate-spheroidal •) termine usato per indicare la forma di un granulo radiosimmetrico, spolare, avente il rapporto Dv/Do compreso tra 8/8 e 8/7 (1,00-1,14).
- * pseudo-oblatico (pseudo-oblatic) termine usato per indicare la forma di un granulo bilaterale, eteropolare, che se fosse isopolare sarebbe pseudo-oblato.
- * pseudo-oblato (pseudo-oblate) termine usato per indicare la forma di un granulo bilaterale, isopolare, avente il rapporto P/E_1 compreso tra 4/8 e 6/8 (0,50-0,75).
- * pseudo-oblatoide (pseudo-oblatoid) termine usato per indicare la forma di un granulo bilaterale, subisopolare, che se fosse isopolare sarebbe pseudo-oblato.
- * pseudo-oblato-sferoidale (pseudo-oblate-spheroidal) termine usato per indicare la forma di un granulo bilaterale, isppolare, avente il rapporto P/E₁ compreso tra 7/8 e 8/8 (0,88-1,00).
- * pseudooblato-sferoidalico (pseudo-oblate-spheroidalic) termine usato per indicare la forma di un granulo bilaterale, eteropolare, che se fosse isopolare, sarebbe pseudo-oblato-sferoidale.
- * pseudo-oblato-sferoide (pseudo-oblate-spheroid) termine usato per indicare la forma di un granulo bilaterale, subisopolare, che se fosse isopolare, sarebbe pseudo-oblato-sferoidale.
- * pseudo-peroblatico (pseudo-peroblatic) termine usato per indicare la forma di un granulo bilaterale, eteropolare, che se fosse isopolare, sarebbe pseudo-peroblato.
- * pseudo-peroblato (pseudo-peroblate) termine usato per indicare la forma di un granulo bilaterale, isopolare, avente il rapporto P/E_1 < di 4/8 (< 0.50).
- * pseudo-peroblatoide (pseudo-peroblatoid) termine usato per indicare la forma di un granulo bilaterale, subisopolare, che se fosse isopolare, sarebbe pseudo-peroblato.

- * pseudo-perprolatico (pseudo-perprolatic) termine usato per indicare la forma di un granulo bilaterale, eteropolare, che se fosse isopolare, sarebbe pseudo-perprolato.
- * pseudo-perprolato (pseudo-errolate) termine usato per indicare la forma di un granulo bilaterale, isopolare, avente il rapporto P/E_1 > di 8/4 (> 2,00).
- * pseudo-perprotatoide, (pseudo-perprolatoid) termine usato per indicare la forma di un granulo bilaterale, subisopolare, che se fosse isopolare, sarebbe pseudo-perprolato.
- * pseudo-suboblatoide (pseudo-suboblatoid) termine usato per indicare la forma di un granulo bilaterale, subisopolare, che se fosse isopolare, sarebbe pseudo-suboblato.
- * pseudo-subprolatico (pseudo-subprolatic) termine usato per indicare la forma di un granulo bilaterale, eteropolare, che se fosse isopolare, sarebbe pseudo-subprolato.
- * pseudo-subprolato (pseudo-subprolate) termine usato per indicare la forma di un granulo bilaterale, isopolare, avente il rapporto P/E₁ compreso tra 8/7 e 8/6 (1,14-1,33).
- * pseudo-subprolatoide (pseudo-subprolatoid) termine usato per indicare la forma di un granulo bilaterale, subisopolare, che se fosse isopolare, sarebbe pseudo-subprolato.
- * pseudo-subsferoidale (pseudo-subspheroidal) termine usato per indicare la forma di un granulo bilaterale, isopolare, avente il rapporto P/E₁ compreso tra 6/8 e 8/6 (0,75-1,33).
- * pseudo-subsferoidalico (pseudo-subspheroidalic) termine usato per indicare la forma di un granulo bilaterale, eteropolare, che se fosse isopolare, sarebbe pseudo-subsferoidale.
- * pseudo-subsferoidale (pseudo-subspheroid) termine usato per indicare la forma di un granulo bilaterale, subisopolare, che se fosse isopolare, sarebbe pseudo-subsferoidale.
- * romboidale (rhomboidal) detto di perimetro che richiama la forma di un rombo.
- * sferoidale (spheroidal •) termine usato per indicare la forma di un granulo radiosimmetrico, apolare, il cui rapporto Dv/Do è compreso tra 7/8 e 8/7 (0.88-1.14).
- * subsferoidale (subspheroidal •) termine usato per indicare la forma di un granulo radiosimmetrico, apolare, avente il rapporto Dv/Do compreso tra 6/8 e 8/6 (0,75-1,33).

- * pseudo-prolatico (pseudo-prolatic) termine usato per indicare la forma di un granulo bilaterale, eteropolare, che se fosse isopojlare sarebbe pseudo-prolato.
- * pseudo-prolato (pseudo-prolate) termine usato per indicare la forma di un granulo bilaterale, isopolare, avente il rapporto P/E₁ compreso tra 8/6 e 8/4 (1,33-2,00).
- * pseudo-prolatoide (pseudo-prolatoid) termine usato per indicare la forma di un granulo bilaterale, subisopolare, che se fosse isopolare, sarebbe pseudo-prolato.
- * pseudo-prolato-sferoidale (pseudo-prolate-spheroidal) termine usato per indicare la forma di un granulo bilaterale, isopolare, avente il rapporto P/E₁ compreso tra 8/8 e 8/7 (1,00-1,14).
- * pseudo-prolato-sferoidalico (pseudo-prolate-spheroidalic) termine usato per indicare la forma di un granulo bilaterale, eteropolare, che se fosse isopolare, sarebbe pseudo-prolato-sferoidale.
- * pseudo-prolato-sferoide (pseudo-prolate-spheroid) termine usato per indicare la forma di un granulo bilaterale, subisopolare, che se fosse isopolare, sarebbe pseudo-prolato-sferoidale.
- * pseudo-sferoidale (pseudo-spheroidal) termine usato per indicare la forma di un granulo bilaterale, isopolare, avente il rapporto P/E₁ compreso tra 7/8 e 8/7 (0,88-1,14).
- * pseudo-sferoidalico (pseudo-spheroidalic) termine usato per indicare la forma di un granulo bilaterale, eteropolare, che se fosse isopolare, sarebbe pseudo-sferoidale.
- * pseudo-sferoide (pseudo-spheroid) termine usato per indicare la forma di un granulo bilaterale, subisopolare, che se fosse isopolare, sarebbe pseudo-sferoidale.
- * pseudo-suboblatic (pseudo-suboblatic) termine usato per indicare la forma di un granulo bilaterale, eteropolare, che se fosse isopolare, sarebbe pseudo-suboblato.
- * pseudo-suboblato (pseudo-suboblate) termine usato per indicare la forma di un granulo bilaterale, isopolare, avente il rapporto P/E₁ compreso tra 6/8 e 7/8 (0,75-0,88).

BIBLIOGRAFIA

- Accorsi C. A., 1972, Presentazione di schede per una Flora Palinologica Italiana. Informatore Botanico, 5, 26: 76.
- Anonymus, 1958, Towards terminological unification in pollen and spore morphology. Grana Palynologica, 1 (3): 3-5.
- AYTUG B., AYKUT S., Merev N., Edis, 1971, Atlas des pollens des environs d'Istanbul, Istanbul.
- BEUG H. J., 1961, Leitfaden der Pollenbestimmung. I, Stuttgart.
- Della Casa Accorsi C. A., Bertolani Marchetti D. (1974) Schede per una Flora Palinologica Italiana. Not. Fitosoc. 8: 97-127.
- ERDTMAN G., 1943, An introduction to Pollen Analysis. Chron. Bot., 12.
- ERDTMAN G., 1957, Pollen and Spore morphology. Plant taxonomy. II Gymnospermae, Pteridophyta, Bryophyta. Upsala.
- ERDTMAN G., 1960, The acetolysis method. A revised description. Svensk Bot. Tidskr., 54 (4): 561-564.
- ERDTMAN G., 1965, Pollen and Spores morphology. Plant taxonomy. III Gymnospermae, Bryophyta. Upsala.
- ERDTMAN G., 1969, Handbook of Palynology. Munksgaard.
- ERDTMAN G., 1971, Pollen and Spore Morphology. Plant taxonomy. I Angiospermae. New York.
- ERDTMAN G., BERGLUND B., PRAGLOWSKI J., 1961, An introduction to a Scandinavian Pollen Flora; I. Upsala.
- ERDTMAN G., VISHNU-MITTRE, 1958, Mimeographed circular Palynologiska Laboratoriet: 1-4-1957. Grana Palynologica, 1 (3): 6-9.
- FAEGRI K., JVERSEN J., 1964, Textbook of Pollen Analysis. Munksgaard.
- FIORI A., 1929, Nuova Flora Analitica d'Italia, II. (Rist. 1969) Bologna.
- Kumazawa M., 1936, Pollen grains morphology of Ranunculaceae and Berberidaceae. Jap. Journ. Bot., 8: 1946.
- MAURIZIO A., LOUVEAUX J., 1969, Pollens des plantes melliféres d'Europe, I. Pollen et spores 2, 2.
- NAYAR B. K. and DEVI S., 1963, Spore morphology of some Japanese Aspidiaceae. Pollen et Spores 5 (2): 355-372.
- NAYAR B. K., LATA P., TIWARI L. P., 1964, Spore morphology of the ferns of West tropical Africa. Pollen et spores 6 (2): 545-582.
- NAYAR B. K. and Santha Devi, 1964, Spore morphology of Indian Ferns, I: Aspidaceae. Grana Palynologica, 5: 83-131.
- NAYAR B. K. and Santha Devi, 1964, Spore morphology of Indian Ferns, II: Aspleniaceae and Blechnaceae. Grana Palynologica, 5: 210-235.
- NAYAR B. K. and KAUR S., 1965, Spore morphology of some indian members of the Lomariopsidaceae. Pollen et Spores 5: 87-94.
- NILSSON S., 1967, Notes on Pollen morphological variation in Gentianaceae-Gentianinae. Pollen et Spores 9: 49-58.
- NILSSON S., 1967, Pollen morphological studies in the Gentianaceae-Gentianinae. Grana Palynologica 7: 46-147.

- STIK E., 1960, Pollemorphologische untersuchungen an Compositen. Grana Palynologica 2 (2): 41-118.
- STRAKA H., 1964, Palynologya madagassica et mascarenica. Pollen et Spores 5: 239-301.
- Tardieu-Blot M. L., 1964, Sur les Spores des Davalliaceae et Vittoriaceae Malgaches. Pollen et Spores 6: 535-544.
- TARDIEU-BLOT M. L., 1966, Sur les Spores des Fougères Malgaches: Filicales, Marattiales, Ophioglossales. Pollen et Spores 8 (1): 76-122.
- TUTIN T. G. and Coll., 1964-1972, Flora Europea I, II, III, Cambridge.
- VISHNU-MITTRE and SHARMA B. D., 1962, Studies of Indian Pollen Grains, I: Leguminosae. Pollen et Spores 4 (1): 5-45.
- VISHNU-MITTRE and SHARMA B. D., 1963, Studies of Indian Pollen Grains, IIG Ranunculaceae. Pollen et Spores 5 (2): 285-296.
- VISHNU-MITTRE and GUPTA H. P., 1964, Studies of Indian Pollen Grains, III: Caryophyllaceae. Pollen et Spores 6: 99-111.