Flora Palinologica Italiana.
Schede elaborate tramite Computer
RIASSUNTO

Viene presentato un nuovo programma in CBASIC (PALCOMP) che opera la trasformazione dei dati grezzi palinologici (ossia i valori biometrici letti al micrometro) nella scheda definitiva.

Segue una breve illustrazione della banca dati palinologici, costituita dalle suddette schede, e la disamina di due fondamentali utilites: *taxonomia numerica e metodi d'identificazione automatica*.

Proseguendo nella redazione delle schede per la Flora Palinologica Italiana, è presentato il primo contributo realizzato tramite computer.

ABSTRACT

A new program in CBASIC (PALCOMP) is produced. It converts the raw palynological data, that consist in the biometric distances read at micrometer, is a definitive card.

A brief illustration of the palynological data bank consisting of the above-mentioned cards, and the examination of two fundamental utilities: *numerical taxonomy and automated biological identification keys* are given too.

As a further contribution to the Palynological Italian Flora, we present here cards carried out by computer.

1. PREMESSA (D. Bertolani Marchetti)

Dieci anni fa è stata avviata la redazione di Schede per la Flora Palinologica Italiana (*Accorsi*, 1972; *Della Casa Accorsi et Bertolani Marchetti*, 1974).

Il procedere del progetto e la messa a punto di modelli dettagliati, basati su un notevole numero di dati, ha creato i presupposti per pensare all’utilizzo di procedure automatizzate che rendano più veloce la stesura delle schede e che immagazzinino i dati in vista della redazione di chiavi analitiche e di ulteriori sviluppi ad interesse sia attuale che paleopalinologico.

Si è così giunti alla realizzazione di programmi per la elaborazione automatica delle schede e per la creazione di una Banca Dati Palinologici, attraverso una collaborazione tra palinologi dell’Istituto Botanico di Bologna ed il gruppo Banca Dati dell’Istituto Botanico di Catania.

In questa sede sono esposti i primi risultati di tale collaborazione; viene presentata una serie di schede elaborate tramite computer e sono illustrate le linee dei futuri programmi. Esprimiamo la speranza che l’iniziativa trovi seguito presso i ricercatori dei diversi Istituti impegnati nella Flora Palinologica Italiana che si trovano a disposizione un mezzo di indagine particolarmente adatto a ottenere migliori e più rapidi risultati.
2. PALCOMP - Programma per l’elaborazione di schede palinologiche tramite computer. (M. Aiello, W. De Leonardis, V. Piccione)

Illustriamo, fra i vari programmi che costituiscono il package della Banca DAti Palinologici (Aiello, De Leonardis e Piccione, 1982), il PALCOMP (1) che traduce, in maniera del tutto automatica, la matrice dei dati grezzi (rappresentata quasi sempre dal riporto del numero di tacche micrometriche lette nella misurazione dei vari parametri del granulo-pollinico) nella scheda definitiva. Adotta parametri, formule, casistiche e criteri universalmente accettati. Riteniamo quindi che possa aiutare non solo coloro che hanno aderito alla redazione delle schede palinologiche italiane, ma quasi operano nel settore.

PALCOMP

Il PALCOMP che, per semplicità di discorso, definiamo in questa sede programma, è in effetti una serie di procedure opportunamente linkate fra loro e strettamente correlate ad alcuni files o archivi che distinguiamo in Procedure files e Palynological files.

I primi contengono informazioni generali sui criteri di correlazione fra i parametri palinologici e di analisi biométrica dei campioni; i secondi portano i dati relativi alle singole specie, distinti, a loro volta, in constant files e variable files.

I constant files costituiscono i dati descrittivi del polline (es.: binomio latino della specie di appartenenza, località di provenienza del materiale, n° codice, ecc.).

I variables files costituiscono invece il serbatoio dei dati desunti al microscopio ottico, nonché l’output statistico.
Ripercorriamo i momenti salienti dell’input-elaborazione-output (Fig. 1) servendoci, ai fini esemplificativi, del Pinus mugo Turra (vedasi palinoscheda nella 2ª parte).

Supposto di optare per la fase di caricamento dati (Tab. 1), da video verrà richiesto
Specie?
N° campioni pollinici?
N° parametri?

Ottenute le risposte l’elaboratore attiva un contatore. Ad ogni valore numerico l’operatore aggiunga l’epiteto che ne indicizza la variabile e immette i corrispondenti dati. Poiché nel nostro caso la tabella dei dati input (Tab. 2) porta 100 campioni x 46 parametri, 4600 informazioni, tutte le volte che il ricercatore immette l’ultimo dato di una variabile il contatore avanzerà di un’unità (così fino al 100mo campione del 46mo parametro). Indi, appari-rà la richiesta

Distanza in μm fra due tacche micrometriche?

L’operatore batterà il fattore di conversione, con esclusione di quei casi in cui i dati input sono già in micrometri.

Segue automaticamente il computo della media, dell’intervallo, della deviazione standard (s), della moda e della mediana di ogni parametro. L’introduzione di queste ultime due medie è nata dalla necessità di conservare quante più informazioni si evincono dalla matrice dei dati grezzi.

La stampa su video di un contatore di parametri già computati consente all’operatore di prevedere i tempi di elaborazione.

La presenza di 3 files: Rapporti semplici, Rapporti complessi e Casistiche fa sì che, da programma, avvenga la ricerca e il computo di quei rapporti e di quelle casistiche previste sulla base dei parametri introdotti e di quelli individuati nei 3 files. Si sottolinea la possibilità di poter aggiungere in ogni momento nuovi rapporti o casistiche.

In atto il programma prevede 45 rapporti semplici, 10 formule e 11 casistiche.

Nel caso specifico di Pinus mugo, completato il calcolo statistico dei parametri semplici (Tab. 3), opportune subroutines computeranno:
i rapporti (Tab. 4)
le formule (Tab. 5)
le casistiche (Tab. 6).

La stampa di output risulterà articolata come da Tab. 2.
Supponendo di optare per la stampa della scheda definitiva su video apparirà la maschera di caricamento

Famiglia?
Specie?
Etichetta e n° d’erbario?
Località di raccolta?
Altezza s.l.m.?
Data di raccolta?

Indi seguirà il menù degli elementi morfologici (previsti da programma sotto forma di richieste):

Tipo di raggruppamento?

risposta (per Pinus mugo)

monadi

Tipo di simmetria?

risposta (per Pinus mugo)

bilaterale

e così di seguito per le voci Polarità, Perimetro, Forma, Aperture, Perina e/o Esina, Grandi anomali.

Per le voci Esina e/o Perina, Perimetro, Forma, Aperture andrà formulato un testo, per il quale non esistono limitazioni di lunghezza.

Per le Aperture viene chiesto il tipo, la descrizione, la classificazione (secondo Fægri e Iversen, 1964) e la NPC (secondo Erdtman, 1969).
La ubicazione su scheda delle stringhe statistiche avviene automaticamente tramite battitura dei codici che richiamano i dati dai files.

Soddisfatta la richiesta della maschera, Dimensioni, verrà stampata automaticamente la scheda definitiva (vedasi alcuni esempi in Accorsi et alii, cap. 3).

La particolare cura riservata alla possibilità di apportare, in ogni momento, correzioni sui dati, sulle operazioni scelte e sui testi è stato uno dei principali obiettivi degli AA. Ciò nell'ottica di fornire un programma agile, duttile e facilmente gestibile. Si sottolinea il fatto, non trascurabile, che il programma non necessita di una guida all'uso in quanto adotta un metodo colloquiale d'immediata intelligibilità per l'operatore.

BANCA DATI PALINLOGICI

Alla composizione e stampa della scheda definitiva segue, tramite il programma TRANSFER (Fig. 1), la memorizzazione su memorie di massa. Ad analoga trafila soggiacciono le altre schede palinologiche, la cui archiviazione sancisce la costituzione della banca dei dati palinologici.

Essa si rende necessaria nel momento in cui si « manipolano » grosse moli di dati per le quali sono richieste rapidità di calcolo ed elaborazioni complesse. Nel caso specifico è ipotizzabile che, se ogni scheda palinologica prevedesse 100 informazioni, la moltiplicazione di questo valore per il numero delle specie censite della flora italiana, circa 6.000 (Pignatti, 1982), eleverebbe ad oltre mezzo milione il numero dei dati in memoria. Quest'ultimo valore raddoppierebbe qualora, a loro volta, venissero introdotti i dati di paleopalinologia.

L'analisi strutturale della banca, attualmente in fase di realizzazione, è qui omessa in favore della illustrazione di alcune fra le più interessanti « utilities » previste.

Ricordiamo che la pacard (palinological card), interamente codificata in chiave alfanumerica, rappresenta l'unità elementare
della suddetta banca (vedasi organigrama di Fig. 1, fase II) ed è costituita da un file scomposto in 12 campi:

NOME - contempla genere, specie e famiglia
ERBARIO - intestazione
STAZIONE - località di raccolta, altezza sul livello del mare e data
RAGGRUPPAMENTO - riporto del tipo es. monadi, diadi poliadi
SIMMETRIA - riporto del tipo es. bilaterale, radical-simmetrico, etc.
POLARITA' - riporto del tipo es. isopolare, apolare, etc.
PERIMETRO - descrizione
FORMA - riporto del tipo es. oblato, prolato, etc.
APERTURE - classificazione NPC
tipo (es. colpi, pori, etc.)
descrizione
PERINA - descrizione
ESINA - descrizione
DIMENSIONI - n° granuli osservati e misure

Le voci Aperture, Perina, Esina e Dimensioni contemplano altresì media, moda, mediana, intervallo di esistenza, derivazione standard e, in alcuni casi, il valore percentuale (come ad esempio per Forma e Perimetro).

UTILITIES

Le palcards, riunite a formare un’unica matrice, permettono, fra le innumerevoli applicazioni, la costruzione di chiavi diagnostiche e studi di tassonomia numerica (performances evidenziate in De Leonardis e Piccione, 1981).
1) Chiavi diagnostiche

Sul tema esiste un’ampia letteratura nota come *tecniche d’identificazione automatica*, tecniche riconducibili a due distinti modi di operare

- **monotetico**: quando i taxa vengono individuati per gradi sulla base dei loro caratteri considerati singolarmente
- **politetico**: quando la comparazione è simultanea su tutti i caratteri.

L’utilizzo dell’elaboratore — vedasi Tab. 1 in AIELLO, PICCIONE et SALEM (1982) — risulta nelle *chiavi dicotomiche* e nelle *chiavi su scheda* e su scheda bibliografica limitato alla fase costruttiva; è invece continuo — dalla costruzione delle chiavi alla fruizione — nelle *chiavi conversazionali* e di *comparazione*.

Gli attuali packages offrono al ricercatore un’ampia scelta di programmi (vedasi AIELLO, PICCIONE, SALEMI, l.c.) per

- Key-forming
- Punched card keys
- Comparison of taxa
- Identification by comparison
- Identification by elimination
- On-line identification

Il vantaggio di servirsi dell’elaborazione automatica risiede nella difficoltà di confrontare manualmente una quantità non indifferente di dati di tipo principalmente biometrico quasi sempre di non facile lettura.

L’elaboratore è certamente il mezzo più idoneo per superare simili difficoltà consentendo la costruzione di più chiavi diagnostiche sulla base di una comune matrice. A ciò unisca che, per la definizione di reperti paleopalinologici sono da preferirsi i metodi di comparazione simultanea dei dati (analisi politetica), tramite formule di distanza o di similitudine, in quanto permettono di isolare, sulla base dei caratteri letti sull’esemplare, quelle specie più somiglianti al reperto in questione.
2) Tassonomia numerica

La palinologia, al pari delle altre scienze, vanta non poche ricerche in cui le tecniche di analisi statistica multivariata giocano un ruolo importante.

Sono metodi statistici (regressione multipla, analisi delle componenti principali, correlazioni canniche, analisi fattoriale, analisi dei grappoli = cluster analysis, analisi discriminante, etc.), rivolti al trattamento di fenomeni descritti da una pluralità di variabili. Hanno richiamato l’attenzione di studiosi afferenti ai campi di ricerca più disparati (economia, sociologia, medicina, ecologia, marketing, etc.) in quanto, grazie ai sofisticati elaboratori delle ultime generazioni, consentono agevolmente di risolvere non pochi problemi abituali della ricerca.

In palinologia vari autori hanno adottato le suddette tecniche. Fra questi ricordiamo Adam, 1970; Birks e Saarnisto, 1975; Gordon e Birks et alii, 1975; Gordon e Birks, 1972a, b; Gordon e Prentice, 1977; Pennington e Sackin, 1975; Webb, 1974; etc.

I metodi (vedasi Sneath e Sokal, 1973; Orloci, 1978; Benzecri, 1980; etc.) numerosi e spesso complessi — tali da giustificare l’uso dell’elaboratore — sono riconducibili a due grossi blocchi:

- di ordinamento in cui lo spazio di riferimento (la matrice dei dati) viene semplificato in uno di lavoro di minori dimensioni ma conservante quanto più dell’informazione iniziale

- di raggruppamento in cui gli oggetti vengono accoppiati in clusters (grappoli) sulla base di indici di similitudine o di distanza

La rappresentazione grafica di quest’ultimo è spesso un dendrogramma (grafico a forma di albero) anch’esso realizzabile all’elaboratore (McCammon e Wenninger, 1970; Atello e Piccione, 1980).
CONCLUSIONI

L’elaborazione automatica delle schede palinologiche determina un sensibile risparmio di tempo e, nel caso specifico, la possibilità di operare automaticamente il trasferimento dei dati elaborati in memoria di massa (di norma l’operazione di immettere dati da console è lunga e onerosa).

Lo « stockaggio » dei suddetti dati elaborati rappresenta il « primus actus » della banca dati, aprendo un nuovo capitolo sulla sperimentazione delle chiavi analitiche automatiche.

NOTE

Fig. 1 - Flow chart of the construction-management of a palcard.

Fig. 1 - Organigramma generale della costruzione-gestione della scheda palinologica.
<table>
<thead>
<tr>
<th>Menù</th>
<th>Operazioni</th>
<th>Elaborazione</th>
<th>Stampante</th>
<th>Palinosheda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine operazioni</td>
<td>CARICAMENTO DATI</td>
<td>CONVERSIONE IN MICROMETRI</td>
<td>ELABORAZIONE</td>
<td>PALINOSHEDA</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Fine operazioni</td>
<td>Fine operazioni</td>
<td>Fine operazioni</td>
<td>Fine operazioni</td>
<td>Fine operazioni</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Tabella 1 - Menù generale delle opzioni attivate.

Tab. 1 - General menu of the activated options.
Finus mugo Turra

Dati input

<table>
<thead>
<tr>
<th>Edt</th>
<th>71.00</th>
<th>76.00</th>
<th>67.00</th>
<th>63.00</th>
<th>66.90</th>
<th>62.00</th>
<th>65.00</th>
<th>53.50</th>
<th>72.00</th>
<th>60.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64.00</td>
<td>64.00</td>
<td>67.00</td>
<td>72.00</td>
<td>60.00</td>
<td>69.50</td>
<td>68.00</td>
<td>65.00</td>
<td>57.00</td>
<td>59.00</td>
</tr>
<tr>
<td></td>
<td>59.00</td>
<td>65.50</td>
<td>69.00</td>
<td>65.00</td>
<td>67.00</td>
<td>74.00</td>
<td>59.00</td>
<td>66.00</td>
<td>60.50</td>
<td>71.50</td>
</tr>
<tr>
<td></td>
<td>64.00</td>
<td>65.50</td>
<td>69.00</td>
<td>65.00</td>
<td>67.00</td>
<td>74.00</td>
<td>59.00</td>
<td>66.00</td>
<td>60.50</td>
<td>71.50</td>
</tr>
<tr>
<td></td>
<td>61.50</td>
<td>71.00</td>
<td>70.00</td>
<td>69.00</td>
<td>62.00</td>
<td>71.00</td>
<td>60.00</td>
<td>65.00</td>
<td>63.00</td>
<td>70.00</td>
</tr>
<tr>
<td></td>
<td>71.00</td>
<td>68.00</td>
<td>67.50</td>
<td>72.00</td>
<td>57.00</td>
<td>67.50</td>
<td>67.00</td>
<td>65.00</td>
<td>66.00</td>
<td>68.00</td>
</tr>
<tr>
<td></td>
<td>63.00</td>
<td>70.00</td>
<td>67.00</td>
<td>65.00</td>
<td>57.00</td>
<td>69.00</td>
<td>65.00</td>
<td>68.00</td>
<td>74.00</td>
<td>66.00</td>
</tr>
<tr>
<td></td>
<td>65.00</td>
<td>66.50</td>
<td>65.00</td>
<td>64.00</td>
<td>62.00</td>
<td>71.00</td>
<td>75.00</td>
<td>67.00</td>
<td>64.00</td>
<td>65.00</td>
</tr>
<tr>
<td></td>
<td>60.00</td>
<td>62.00</td>
<td>69.00</td>
<td>62.00</td>
<td>64.00</td>
<td>63.00</td>
<td>65.00</td>
<td>76.00</td>
<td>65.00</td>
<td>65.00</td>
</tr>
</tbody>
</table>

Edt

<table>
<thead>
<tr>
<th>40.00</th>
<th>40.00</th>
<th>38.00</th>
<th>35.50</th>
<th>38.00</th>
<th>40.50</th>
<th>40.00</th>
<th>38.00</th>
<th>41.50</th>
<th>40.00</th>
<th>38.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.00</td>
<td>41.50</td>
<td>39.00</td>
<td>41.50</td>
<td>35.00</td>
<td>45.50</td>
<td>37.50</td>
<td>35.00</td>
<td>37.50</td>
<td>37.50</td>
<td>37.00</td>
</tr>
<tr>
<td>36.00</td>
<td>41.00</td>
<td>40.00</td>
<td>37.50</td>
<td>40.00</td>
<td>41.00</td>
<td>35.00</td>
<td>38.00</td>
<td>41.50</td>
<td>35.00</td>
<td>37.00</td>
</tr>
<tr>
<td>38.50</td>
<td>41.00</td>
<td>36.00</td>
<td>39.00</td>
<td>39.00</td>
<td>37.00</td>
<td>37.50</td>
<td>35.00</td>
<td>37.50</td>
<td>37.50</td>
<td>37.00</td>
</tr>
<tr>
<td>35.00</td>
<td>37.50</td>
<td>40.00</td>
<td>31.00</td>
<td>40.00</td>
<td>36.00</td>
<td>40.00</td>
<td>34.50</td>
<td>36.00</td>
<td>40.00</td>
<td>40.00</td>
</tr>
<tr>
<td>34.50</td>
<td>39.00</td>
<td>43.00</td>
<td>40.50</td>
<td>37.50</td>
<td>40.50</td>
<td>41.00</td>
<td>35.50</td>
<td>37.50</td>
<td>43.00</td>
<td>37.00</td>
</tr>
<tr>
<td>40.00</td>
<td>36.00</td>
<td>36.00</td>
<td>39.00</td>
<td>41.00</td>
<td>37.00</td>
<td>41.00</td>
<td>40.00</td>
<td>30.50</td>
<td>40.00</td>
<td>40.00</td>
</tr>
<tr>
<td>39.00</td>
<td>42.00</td>
<td>40.00</td>
<td>40.50</td>
<td>35.00</td>
<td>40.00</td>
<td>43.00</td>
<td>41.00</td>
<td>41.00</td>
<td>42.00</td>
<td>42.00</td>
</tr>
<tr>
<td>41.50</td>
<td>40.50</td>
<td>40.00</td>
<td>39.00</td>
<td>39.00</td>
<td>43.00</td>
<td>42.00</td>
<td>37.00</td>
<td>41.50</td>
<td>37.00</td>
<td>37.00</td>
</tr>
<tr>
<td>37.50</td>
<td>35.50</td>
<td>41.00</td>
<td>38.00</td>
<td>36.50</td>
<td>36.00</td>
<td>30.00</td>
<td>42.00</td>
<td>38.50</td>
<td>42.00</td>
<td>42.00</td>
</tr>
</tbody>
</table>

Tab. 2 - Stampa di dati input (nell'esempio: 1°, 2° ed ultimo parametro di *Finus mugo Turra*).

Tab. 2 - Printing of data input (in the example: first, second and last parameter of *Pinus mugo Turra*).
<table>
<thead>
<tr>
<th>Nome Parametro</th>
<th>Media</th>
<th>Max</th>
<th>Min</th>
<th>s</th>
<th>Media</th>
<th>Mediana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elf</td>
<td>65.81</td>
<td>78.00</td>
<td>53.00</td>
<td>4.30</td>
<td>65.00</td>
<td>66.00</td>
</tr>
<tr>
<td>Ezt</td>
<td>39.03</td>
<td>45.50</td>
<td>31.00</td>
<td>2.50</td>
<td>40.00</td>
<td>39.00</td>
</tr>
<tr>
<td>Pf</td>
<td>42.98</td>
<td>50.00</td>
<td>34.00</td>
<td>1.61</td>
<td>43.00</td>
<td>43.00</td>
</tr>
<tr>
<td>Eit</td>
<td>47.03</td>
<td>53.00</td>
<td>36.00</td>
<td>3.06</td>
<td>47.00</td>
<td>47.50</td>
</tr>
<tr>
<td>Ezc</td>
<td>36.77</td>
<td>45.50</td>
<td>30.00</td>
<td>2.71</td>
<td>40.00</td>
<td>39.00</td>
</tr>
<tr>
<td>Pfc</td>
<td>33.67</td>
<td>39.50</td>
<td>25.00</td>
<td>2.45</td>
<td>35.00</td>
<td>34.00</td>
</tr>
<tr>
<td>Els-d</td>
<td>27.84</td>
<td>35.50</td>
<td>23.00</td>
<td>1.40</td>
<td>30.00</td>
<td>28.00</td>
</tr>
<tr>
<td>SpEls-d</td>
<td>9.34</td>
<td>13.00</td>
<td>5.50</td>
<td>1.71</td>
<td>10.00</td>
<td>9.50</td>
</tr>
<tr>
<td>Ez2s-d</td>
<td>36.19</td>
<td>42.00</td>
<td>29.50</td>
<td>2.84</td>
<td>37.00</td>
<td>36.00</td>
</tr>
<tr>
<td>Ae-d</td>
<td>21.48</td>
<td>29.00</td>
<td>13.00</td>
<td>3.04</td>
<td>22.00</td>
<td>22.00</td>
</tr>
<tr>
<td>dzs-d</td>
<td>28.01</td>
<td>35.00</td>
<td>25.00</td>
<td>2.40</td>
<td>29.00</td>
<td>29.00</td>
</tr>
<tr>
<td>dtf-d</td>
<td>22.76</td>
<td>28.00</td>
<td>17.00</td>
<td>2.42</td>
<td>22.00</td>
<td>23.00</td>
</tr>
<tr>
<td>Spdzs-d</td>
<td>15.78</td>
<td>20.00</td>
<td>12.00</td>
<td>1.75</td>
<td>15.00</td>
<td>15.50</td>
</tr>
<tr>
<td>h:m:s</td>
<td>4.39</td>
<td>5.50</td>
<td>3.00</td>
<td>0.45</td>
<td>4.50</td>
<td>4.50</td>
</tr>
<tr>
<td>es.diel.</td>
<td>5.68</td>
<td>1.20</td>
<td>0.50</td>
<td>0.21</td>
<td>0.70</td>
<td>0.50</td>
</tr>
<tr>
<td>Efs-s</td>
<td>27.62</td>
<td>34.00</td>
<td>22.00</td>
<td>2.25</td>
<td>26.00</td>
<td>27.00</td>
</tr>
<tr>
<td>SpEfs-s</td>
<td>9.50</td>
<td>14.00</td>
<td>5.50</td>
<td>1.67</td>
<td>9.00</td>
<td>9.50</td>
</tr>
<tr>
<td>Efs-c</td>
<td>30.09</td>
<td>43.00</td>
<td>28.50</td>
<td>2.61</td>
<td>26.00</td>
<td>26.00</td>
</tr>
<tr>
<td>Ae-s</td>
<td>21.48</td>
<td>27.00</td>
<td>13.00</td>
<td>2.00</td>
<td>22.00</td>
<td>22.00</td>
</tr>
<tr>
<td>dzs-s</td>
<td>20.75</td>
<td>34.50</td>
<td>23.00</td>
<td>2.35</td>
<td>28.00</td>
<td>29.00</td>
</tr>
<tr>
<td>dtf-s</td>
<td>22.56</td>
<td>27.50</td>
<td>17.00</td>
<td>2.10</td>
<td>22.00</td>
<td>22.00</td>
</tr>
<tr>
<td>Spdzs-s</td>
<td>15.71</td>
<td>20.00</td>
<td>11.50</td>
<td>1.38</td>
<td>16.00</td>
<td>16.00</td>
</tr>
<tr>
<td>h:m:s</td>
<td>4.47</td>
<td>5.50</td>
<td>3.50</td>
<td>0.47</td>
<td>4.50</td>
<td>4.50</td>
</tr>
<tr>
<td>Elz</td>
<td>10.24</td>
<td>13.00</td>
<td>6.00</td>
<td>1.92</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Ez2</td>
<td>24.25</td>
<td>33.00</td>
<td>15.00</td>
<td>3.99</td>
<td>22.00</td>
<td>24.00</td>
</tr>
<tr>
<td>Pcs</td>
<td>10.53</td>
<td>20.00</td>
<td>7.00</td>
<td>2.27</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>cn</td>
<td>2.14</td>
<td>3.50</td>
<td>1.50</td>
<td>0.31</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>es.min.</td>
<td>1.33</td>
<td>2.00</td>
<td>1.00</td>
<td>0.33</td>
<td>1.00</td>
<td>1.30</td>
</tr>
<tr>
<td>es.med.</td>
<td>1.87</td>
<td>3.00</td>
<td>1.50</td>
<td>0.24</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>es.max.</td>
<td>2.34</td>
<td>4.50</td>
<td>1.89</td>
<td>0.53</td>
<td>3.00</td>
<td>2.50</td>
</tr>
<tr>
<td>a.perv.</td>
<td>1.55</td>
<td>4.00</td>
<td>1.00</td>
<td>0.50</td>
<td>1.00</td>
<td>1.50</td>
</tr>
<tr>
<td>a.med.</td>
<td>1.68</td>
<td>3.00</td>
<td>0.00</td>
<td>0.29</td>
<td>2.00</td>
<td>1.89</td>
</tr>
<tr>
<td>a.perv.</td>
<td>1.54</td>
<td>3.00</td>
<td>1.00</td>
<td>0.50</td>
<td>1.20</td>
<td>1.50</td>
</tr>
<tr>
<td>a.med.</td>
<td>1.56</td>
<td>3.00</td>
<td>0.50</td>
<td>0.45</td>
<td>2.00</td>
<td>1.50</td>
</tr>
<tr>
<td>a.perv.</td>
<td>1.49</td>
<td>2.50</td>
<td>1.00</td>
<td>0.35</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>a.med.</td>
<td>2.86</td>
<td>6.00</td>
<td>1.00</td>
<td>1.02</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>z.med.</td>
<td>0.99</td>
<td>5.00</td>
<td>1.50</td>
<td>0.75</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>a.med.</td>
<td>3.05</td>
<td>7.00</td>
<td>1.00</td>
<td>0.99</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>a.med.</td>
<td>2.83</td>
<td>4.00</td>
<td>1.00</td>
<td>0.63</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>a.med.</td>
<td>2.75</td>
<td>4.50</td>
<td>1.00</td>
<td>0.21</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>a.mn.</td>
<td>4.13</td>
<td>11.20</td>
<td>3.00</td>
<td>1.88</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td>a.mn.</td>
<td>5.66</td>
<td>11.00</td>
<td>3.00</td>
<td>1.14</td>
<td>6.00</td>
<td>5.50</td>
</tr>
<tr>
<td>a.mn.</td>
<td>5.47</td>
<td>11.00</td>
<td>3.00</td>
<td>1.32</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>a.mn.</td>
<td>5.40</td>
<td>9.00</td>
<td>3.00</td>
<td>1.41</td>
<td>6.00</td>
<td>5.00</td>
</tr>
<tr>
<td>a.mn.</td>
<td>5.55</td>
<td>8.00</td>
<td>3.00</td>
<td>1.32</td>
<td>5.00</td>
<td>5.50</td>
</tr>
<tr>
<td>a.mn.</td>
<td>3.85</td>
<td>2.80</td>
<td>1.20</td>
<td>0.25</td>
<td>3.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Tab. 3 - Output statistico di *Pinus mugo* Turra.
Tab. 3 - Statistical output of *Pinus mugo* Turra.
Tab. 4 - Output statistiche compiuto sui rapporti \((\text{Pinus mugo Turra}) \)

Tab. 4 - Statistical output calculated through the ratios \((\text{Pinus mugo Turra}) \).
Tab. 5 - Output statistico computato sulle formule (*Pinus mugo* Turra).
Tab. 5 - Statistical output calculated through the formulas (*Pinus mugo* Turra).

<table>
<thead>
<tr>
<th>Nome parametro</th>
<th>Media</th>
<th>Max</th>
<th>Min</th>
<th>e</th>
<th>Moda</th>
<th>Mediana</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE6-E1</td>
<td>1.18</td>
<td>1.35</td>
<td>1.01</td>
<td>0.07</td>
<td>1.17</td>
<td>1.17</td>
</tr>
<tr>
<td>IE6-E</td>
<td>1.10</td>
<td>1.47</td>
<td>0.05</td>
<td>0.02</td>
<td>1.17</td>
<td>1.10</td>
</tr>
<tr>
<td>u2a/E1a</td>
<td>1.34</td>
<td>1.19</td>
<td>0.87</td>
<td>0.05</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>E1a/E2a</td>
<td>0.77</td>
<td>0.97</td>
<td>0.62</td>
<td>0.05</td>
<td>0.75</td>
<td>0.77</td>
</tr>
<tr>
<td>IE6-E2</td>
<td>0.93</td>
<td>1.15</td>
<td>0.81</td>
<td>0.06</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>Parc/E1c</td>
<td>pseudo oblatici</td>
<td>Tot 88 perc 88.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1t/E2t</td>
<td>pseudo suboblatici</td>
<td>Tot 12 perc 12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt/E1t</td>
<td>ecero-E</td>
<td>Tot 100 perc 100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1c/E2c</td>
<td>pseudo oblatici</td>
<td>Tot 100 perc 100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>subeuro-E</td>
<td>Tot 11 perc 11.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>subeuro-E</td>
<td>Tot 68 perc 68.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>euro-E</td>
<td>Tot 1 perc 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>subcirculares</td>
<td>Tot 11 perc 11.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ovali</td>
<td>Tot 88 perc 88.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ellittici</td>
<td>Tot 1 perc 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IES-E1</td>
<td>E1-equisaccati</td>
<td>Tot 14 perc 14.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1-mannisaccati</td>
<td>Tot 86 perc 86.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-parvisaccati</td>
<td>Tot 3 perc 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-equisaccati</td>
<td>Tot 49 perc 49.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-mannisaccati</td>
<td>Tot 48 perc 48.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>subobioloidi</td>
<td>Tot 1 perc 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>obiolo sferoidi</td>
<td>Tot 62 perc 62.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>erolato sferoidi</td>
<td>Tot 49 perc 49.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>subercioltoidi</td>
<td>Tot 8 perc 8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1s/E2s</td>
<td>subeuro-E</td>
<td>Tot 67 perc 67.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>euro-E</td>
<td>Tot 33 perc 33.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2-parvisaccati</td>
<td>Tot 26 perc 26.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2-equisaccati</td>
<td>Tot 73 perc 73.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2-mannisaccati</td>
<td>Tot 1 perc 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 6 - Stampa delle casistiche (Pinus mugo Turra).
Tab. 6 - Printing of the casistries (Pinus mugo Turra).
Proseguendo nella pubblicazione dei contributi per la Flora Palinologica Italiana, presentiamo alcune schede redatte con l’utilizzo del computer, nelle quali l’elaborazione e la stesura dei dati biometrici, rilevati al microscopio ottico, è stata effettuata in modo completamente automatizzato, secondo il programma illustrato nel capitolo precedente (Aiello et al. cap. 2).

Superata la fase di impostazione e di controllo del programma, il sistema suddetto ha dato una netta contropartita in termini di risparmio di tempo e si prospetta perciò un sensibile incremento, ameno potenziale, della produzione di schede palinologiche nei prossimi anni.

MATERIALI E METODI

Le schede riguardano i granuli pollinici di:

S 72 - Pinus sylvestris L. subsp. sylvestris
S 73 - Pinus mugo Turra
S 74 - Pinus nigra Arnold
S 75 - Lunaria annua L.
S 76 - Bunas erucago L.
S 77 - Cercis silicuastrum L.
S 78 - Cistus incanus L.
S 79 - Tamus communis L.

Per il trattamento ed il rilevamento dei dati biometrici al M.O. ci siamo attenuti ai criteri adottati nelle schede precedenti (Accorsi et Forlani, 1976; Accorsi, Bandini Mazzanti et Forlani, 1978). Le microfotografie sono state effettuate su microscopio Ortholux con pellicole Agfaortho 25 Professional 15Din, svi-
luppate in Rodinal 1/19 per 5 min. e con Ilford Pan F 18Din sviluppate con Percepol 1/3 per 15 min. La parte iconografica di ogni scheda illustra uno stesso granulo fotografato nelle varie posizioni e dettagli di strutture/sculture dell’esina. La parte biometrica descrittiva ricorda i modelli più recenti dai nostri pubblicati; solo a proposito di qualche parametro è emersa la necessità di dare alcune precisazioni che sono esposte di seguito.

PRECISAZIONI SU ALCUNI PARAMETRI

1) **Forma dei granuli, forma del corpo e delle sacche nei granuli bisaccati:** nelle schede precedenti la forma dei granuli è stata definita sostanzialmente con la terminologia di Erdtmann (1971) basata sui valori assunti dal rapporto P/E nei granuli radiosimmetrici isopolari, applicando, con opportune modifiche, tale terminologia anche ai granuli radiosimmetrici subisopolari, eteropolari ed apolari, ai bilaterali ed anche al corpo ed alle sacche dei granuli bisaccati. Inoltre per i granuli bilaterali, sulla base degli stessi intervalli, fu inserita una nuova terminologia definita dal valore del rapporto tra i due diametri equatoriali (E₁/E₂) estendendola anche al corpo ed alle sacche dei granuli bisaccati. La terminologia di Erdtmann (1971) è però ambigua, in quanto vi sono sovrapposizioni dei limiti delle varie classi (ad es. a P/E = 1.33 può corrispondere sia la forma subprolata che quella prolata).

Durante la compilazione delle presenti schede abbiamo sentito la necessità di precisare in modo univoco i limiti degli intervalli che definiscono le varie classi di forma con criteri simili a quelli usati da Walker et Doyle, 1975.

In base ai valori assunti dai rapporti: P/E, Dv/Do, P/E₁,P₁/E₁,E₁,Pc/E₁c e d₁₅/E₁₅

- **< 0.50** peroblatto, peroblattoide, peroblatto*, peroblatico, pseudo-peroblatto, pseudo-peroblattoide, pseudo-peroblatico
- **0.50-0.75** oblatto, oblatoide, oblatto*, oblatico, pseudo-oblatto, pseudo-oblatoide, pseudo-oblatico
0.76-0.88 suboblato, suboblatoide, suboblato, suboblatico, pseudo-suboblato, pseudo-suboblatoide, pseudo-suboblatico
0.89-0.99 oblato-sferoidale, oblato-sferoide, oblato-sferoidale, oblato-sferoidalico, pseudo-oblato-sferoidale, pseudo-oblato-sferoide, pseudo-oblato-sferoidalico
1.00 sferico, sferico-ide, sferico, sferico-ico, pseudo-sferico, pseudo-sferico-ide, pseudo-sferico-ico
1.01-1.14 prolato-sferoidale, prolato-sferoide, prolato-sferoidale, prolato-sferoidalico, pseudo-prolato-sferoidale, pseudo-prolato-sferoide, pseudo-prolato-sferoidalico
1.15-1.33 subprolato, subprolatoide, subprolato, subprolatico, pseudo-subprolato, pseudo-subprolatoide, pseudo-subprolatico
1.34-2.00 prolato, prolatoide, prolato, prolatico, pseudo-prolato, pseudo-prolatoide, pseudo-prolatico
> 2.00 perprolato, perprolatoide, perprolato, perprolatico, pseudo-perprolato, pseudo-perprolatoide, pseudo-perprolatico
0.89-1.14 sferoidale, sferoide, sferoidale, sferoidalico, pseudo-sferoidale, pseudo-sferoide, pseudo-sferoidalico
0.76-1.33 subsferoidale, subsferoide, subsferoidale, subsferoidalico, pseudo-subsfersoidale, pseudo-subsfersoide, pseudo-subsfersoidalico

In base ai valori assunti dai rapporti: $E_{1}/E_{2}, E_{3}/E_{2}, E_{6}/E_{2}, E_{15}/E_{15}$

$\text{equi-E} \quad 1.00$
$\text{subequi-E} \quad 0.89-0.99 \quad ; \quad 1.01-1.14$
$\text{subetero-E} \quad 0.76-0.88 \quad ; \quad 1.15-1.33$
$\text{etero-E} \quad 0.50-0.75 \quad ; \quad 1.34-2.00$
$\text{peretero-E} \quad < 0.50 \quad ; \quad > 2.00$

Per la definizione di tutti gli intervalli suddetti i valori si intendono approssimati alla seconda cifra decimale.
2) *Simmetria*

La redazione della scheda di *Tamus communis L.* ha posto il problema della corretta definizione di simmetria nel caso di granuli dizonoperturati con perimetro isodiametriico in visione polare (come sono in parte i pollini della specie suddetta). Prescindendo dalle aperture, tali granuli hanno più di due assi verticali di simmetria equilonghi e quindi potrebbero essere considerati radiosimmetrici; se però si tiene conto delle aperture si vede che gli assi di simmetria (equilonghi) sono solo due, per cui i granuli non rientrebbero più nella simmetria radiale.

La letteratura, a questo proposito, riporta criteri diversi: Erdtman (1971), guardando solo gli assi verticali di simmetria, distingue le seguenti possibilità:

- Radiosimmetrici
 - a) con 3 o più assi
 - b) con 2 assi, purché equilonghi
- Bilaterali
 - con 2 assi diversi

Walker et Doyle (1975) dettagliano maggiormente e prevedono, sulla base sia degli assi verticali che delle aperture, varie categorie:

- Radiosimmetrici
 - con 3 o più assi equilonghi
- Bisimmetrici
 - con 2 assi
 - a) bilaterali
 - b) isobisimmetrici
 - I) isobilaterali
 - con una apertura polare allungata
 - II) biradiali
 - con 2 aperture equatoriali

Le due terminologie differiscono, come si vede, solamente per la categoria degli isobisimmetrici, cioè di quei granuli che per certi aspetti appaiono radiosimmetrici (hanno un unico asse \(E \)) e per altri non lo sono (apertura allungata, tipo colpus al polo distale, co-
me può accadere ad es. in pollini monosulcati di *Liliaceae*; oppure due aperture in zona equatoriale, ad es. colpi come appunto in *Tamus communis*).

Poiché la casistica di *Walker* et *Doyle* è più dettagliata e precisa, pensiamo sia opportuno attenersi ad essa, come è stato fatto nel presente lavoro, inserendo anche i casi della isobisimetria.

Per quanto riguarda la definizione della forma nei granuli isobisimmetrici, pensiamo, per non complicare ulteriormente la terminologia, di mantenere i termini usati per i radiosimmetrici.
<table>
<thead>
<tr>
<th>FLORA PALINOLÓGICA ITALIANA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ficus sylvatica L. ssp. sylvatica</td>
</tr>
<tr>
<td>Erbario Palinologico Istituto Botanico Volesana n.53</td>
</tr>
<tr>
<td>Val Venosta m. 750 16.05.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RAGGRUPPAMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>monadi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIMMETRIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>bilaterali</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POLSKITTA'</th>
</tr>
</thead>
<tbody>
<tr>
<td>eteropolarì</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERIMETRO - visione polare</th>
</tr>
</thead>
<tbody>
<tr>
<td>figura complessa formata dalla intersezione di un ellisse con due segmenti circolari od elilittici</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERIMETRO - visione equatoriale</th>
</tr>
</thead>
<tbody>
<tr>
<td>figura complessa formata da un trapezio sui cui lati obliqui sono inseriti due segmenti circolari od elilittici</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>vescicolati-bisaccati</td>
</tr>
<tr>
<td>pseudo-oblati (100%)</td>
</tr>
<tr>
<td>etero-t (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pt/Ett</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIA = 0.62 (0.72-0.52) s = 0.05 MODA = 0.63 MEDIANA = 0.63</td>
</tr>
<tr>
<td>Ett/Ett</td>
</tr>
<tr>
<td>MEDIA = 1.66 (1.02-1.48) s = 0.08 MODA = 1.60 MEDIANA = 1.64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APERTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>monostrami-analetici</td>
</tr>
<tr>
<td>NPC = 131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APERTURE - zona termoinata</th>
</tr>
</thead>
<tbody>
<tr>
<td>di forma rettangolare, +/- allungata, sita al polo distale, tra le sacche</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIA = 1.74 (17.00-6.00) s = 2.19 MODA =12.00 MEDIANA =12.00</td>
</tr>
<tr>
<td>Ett</td>
</tr>
<tr>
<td>MEDIA = 1.71 (16.00-6.00) s = 2.42 MODA =12.00 MEDIANA =12.00</td>
</tr>
<tr>
<td>Ezz</td>
</tr>
<tr>
<td>MEDIA = 25.24 (24.00-20.00) s = 3.07 MODA =27.00 MEDIANA =27.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIMENSIONI</th>
</tr>
</thead>
<tbody>
<tr>
<td>su 50 granuli</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIA = 44.58 (51.00-40.00) s = 2.55 MODA =42.00 MEDIANA =42.00</td>
</tr>
<tr>
<td>Ett</td>
</tr>
<tr>
<td>MEDIA = 74.25 (72.00-40.00) s = 5.66 MODA =72.00 MEDIANA =72.00</td>
</tr>
<tr>
<td>Ezz</td>
</tr>
<tr>
<td>MEDIA = 42.27 (39.00-37.00) s = 3.42 MODA =42.00 MEDIANA =42.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRANULI ANOMALI</th>
</tr>
</thead>
<tbody>
<tr>
<td>su 1000 granuli</td>
</tr>
<tr>
<td>tenuissimi (.10%)</td>
</tr>
<tr>
<td>submacrosetosi (.02%)</td>
</tr>
<tr>
<td>eterosaccati (.00%)</td>
</tr>
<tr>
<td>trissaccati (.01%)</td>
</tr>
<tr>
<td>intersaccati (.20%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RAPPORTI DEL GRANULO INTERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pz/PEt</td>
</tr>
<tr>
<td>MEDIA = 0.75 (0.64-0.62) s = 0.05 MODA = 0.78 MEDIANA = 0.78</td>
</tr>
<tr>
<td>Ett/PEt</td>
</tr>
<tr>
<td>MEDIA = 0.66 (0.78-0.54) s = 0.08 MODA = 0.64 MEDIANA = 0.65</td>
</tr>
<tr>
<td>Ezz/PEt</td>
</tr>
<tr>
<td>MEDIA = 1.92 (1.00-2.77) s = 0.66 MODA = 1.00 MEDIANA = 0.92</td>
</tr>
</tbody>
</table>
CORPO

Pinus sylvestris L., *sub. sylvestris*

- **PERIMETRO - visione polare**
 - circolari (62%)
 - subcirculari (32%)
 - ovali (58%)
 - ellittici (42%)

- **PERIMETRO - visione equatoriale**
 - trapezoidali

- **FORMA**
 - pseudo-oblitici (90%)
 - pseudo-suboblitici (10%)
 - suberico-E (35%)
 - atero-E (4%)

- **Pc/E1c**
 - MEDIA = 1.48 (0.89 - 2.00) s = 0.04 MODA = 0.72 MEDIANA = 0.72

- **Pc/E2c**
 - MEDIA = 1.44 (1.01 - 1.64) s = 0.06 MODA = 0.64 MEDIANA = 0.85

- **E1c/E2c**
 - MEDIA = 1.18 (1.41 - 1.44) s = 0.08 MODA = 1.13 MEDIANA = 1.18

- **ESINA**
 - esina prossimale toccata a solfo, alveolare.
 - esina distale ipotetica esina equatoriale al contorno +/- rimosare.

- **es.pross.**
 - MEDIA = 2.58 (3.50 - 2.00) s = 0.43 MODA = 3.00 MEDIANA = 2.50

- **es.dist.**
 - MEDIA = 3.27 (4.50 - 2.00) s = 0.72 MODA = 3.00 MEDIANA = 3.20

- **es.min.**
 - MEDIA = 1.92 (1.50 - 1.00) s = 0.12 MODA = 1.00 MEDIANA = 1.00

- **es.med.**
 - MEDIA = 2.21 (3.00 - 1.00) s = 0.30 MODA = 2.00 MEDIANA = 2.00

- **es.mac.**
 - MEDIA = 3.82 (6.00 - 2.50) s = 0.87 MODA = 4.00 MEDIANA = 4.00

- **ATTACCO SACCA**

- **E2c/Ac**
 - MEDIA = 1.67 (2.60 - 1.43) s = 0.13 MODA = 1.63 MEDIANA = 1.68

- **DIMENSIONI**

- **Pc**
 - MEDIA = 34.99 (41.00 - 26.00) s = 2.64 MODA = 36.00 MEDIANA = 35.50

- **E1c**
 - MEDIA = 49.15 (57.00 - 42.00) s = 3.43 MODA = 40.00 MEDIANA = 49.00

- **E2c**
 - MEDIA = 41.62 (49.00 - 34.00) s = 2.71 MODA = 44.00 MEDIANA = 42.00
Dimensioni

<table>
<thead>
<tr>
<th>metrica</th>
<th>MEDIA</th>
<th>MODA</th>
<th>MEDIANA</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>31.62</td>
<td>31.00</td>
<td>32.06</td>
</tr>
<tr>
<td>E2</td>
<td>45.93</td>
<td>45.00</td>
<td>45.50</td>
</tr>
<tr>
<td>d1</td>
<td>39.03</td>
<td>35.00</td>
<td>38.00</td>
</tr>
<tr>
<td>d2</td>
<td>35.78</td>
<td>37.00</td>
<td>36.00</td>
</tr>
</tbody>
</table>

E.S.

<table>
<thead>
<tr>
<th>E1</th>
<th>MEDIA</th>
<th>MODA</th>
<th>MEDIANA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.30</td>
<td>1.35</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>1.06</td>
<td>1.06</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>1.40</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>2E1</td>
<td>MEDIA</td>
<td>MODA</td>
<td>MEDIANA</td>
</tr>
<tr>
<td>1.73</td>
<td>1.73</td>
<td>1.73</td>
<td></td>
</tr>
</tbody>
</table>

Distribuzione di frecce

- 32% E1
- 32% E2
- 32% d1

Altezza media

- MEDIA = 5.29
- MODA = 5.00
- MEDIANA = 5.00
Iconografia
Scala A: Figg. 1-4 — Scala B: Figg. 5-7
Figg. 1-4: visione distale a fuochi successivi,
Figg. 5-7: particolari - altezza del sistema alveolare (Fig. 5); alveoli grandi (Fig. 6) e medi (Fig. 7).

ACCORSI CA., BANDINI MAZZANTI M. e FORLANI L.
Pinus sylvestris L. subsp. sylvestris

Iconografia
Scala A: Figg. 1-4 — Scala B: Figg. 5-8.
Figg. 1-4: visione prossimale (Figg. 1,2); visione equatoriale (Figg. 3,4).
Figg. 5-8: particolari - esina equatoriale (Figg. 5,6); esina al polo prossimale (Fig. 7); esina prossimale (Fig. 8).

ACCORSI G.A., BANDINI MAZZANTI M. e FORLANI L.
FLORA PALINOLÓGICA ITALIANA

Pinus mugo Turra
Erbario Palinologico Istituto Botanico Bolonia n.54
Monte Baldo (VR) n.1450 10.05.77

RAGGRUPPAMENTO

I agaudi

SIMMETRIA

i bilaterali

POLARITÀ

etropolare

PERIMETRO - visione polare

i fiori complessa formati dalla intersezione di un'ellisse con due segmenti circolari od ellittici.

PERIMETRO - visione equatoriale

i fiori complessa formati da un trapezoide sui cui lati obliqui sono inseriti due segmenti circolari od ellittici.

FORMA

i vescicolati-bisaccati

pseudo-oblati (100%)

etero-E (100%)

Pt/Elt : MEDIA = 1.65 (0.72-0.58) s = 0.09 MODA = 0.66 MEDIANA = 0.66

Elt/E2t : MEDIA = 1.69 (1.90-1.51) s = 0.09 MODA = 1.63 MEDIANA = 1.69

APERTURE

i monotreme-analitici

APERTURE - zona seminal

i di forma rettangolare, +/- pislata, situati al polo distale, tra le sacche.

Pze : MEDIA = 10.53 (20.00-7.00) s = 2.27 MODA = 10.00 MEDIANA = 10.00

E12a : MEDIA = 10.24 (15.00-6.00) s = 1.92 MODA = 10.00 MEDIANA = 10.00

E2za : MEDIA = 24.52 (33.00-15.00) s = 3.99 MODA = 22.00 MEDIANA = 25.00

DIMENSIONI

1 su 100 granuli

Pt : MEDIA = 42.98 (50.00-34.00) s = 2.91 MODA = 43.00 MEDIANA = 43.00

Elt : MEDIA = 45.61 (70.00-53.00) s = 4.30 MODA = 45.00 MEDIANA = 46.00

E2t : MEDIA = 39.03 (45.50-31.00) s = 2.50 MODA = 40.00 MEDIANA = 39.00

GRANULI ANOMALI

1 su 1000 granuli

subbaccati (5.7%)
eterbaccati (1.1%)
trissaccati (<1%)

RAPPORTI SUL GRANULO INTERO

Pc/Pt : MEDIA = 0.79 (0.72-0.78) s = 0.04 MODA = 0.81 MEDIANA = 0.79

Etc/Elt : MEDIA = 0.72 (0.80-0.65) s = 0.03 MODA = 0.72 MEDIANA = 0.71

E2c/E2t : MEDIA = 0.99 (1.00-0.86) s = 0.02 MODA = 1.00 MEDIANA = 1.00
<table>
<thead>
<tr>
<th>CO R P O</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINUS VIRT URA</td>
</tr>
<tr>
<td>PERIMETRO - visione polare</td>
</tr>
<tr>
<td>subcirculare (11%)</td>
</tr>
<tr>
<td>ovale (88%)</td>
</tr>
<tr>
<td>ellittico (1%)</td>
</tr>
<tr>
<td>PERIMETRO - visione equatoriale</td>
</tr>
<tr>
<td>trapezoidale</td>
</tr>
<tr>
<td>FORMA</td>
</tr>
<tr>
<td>pseudo-oblattici (5%)</td>
</tr>
<tr>
<td>pseudo-oblattici (11%)</td>
</tr>
<tr>
<td>subcirculari (1%)</td>
</tr>
<tr>
<td>subcirculari (92%)</td>
</tr>
<tr>
<td>etero-E (1%)</td>
</tr>
<tr>
<td>Pc/Ec: MEDIA = 0.72 (0.67 - 0.87) s = 0.04 MODA = 0.71 MEDIANA = 0.71</td>
</tr>
<tr>
<td>Fc/Ec: MEDIA = 0.87 (1.00 - 0.75) s = 0.04 MODA = 0.89 MEDIANA = 0.87</td>
</tr>
<tr>
<td>Eic/E2c: MEDIA = 1.24 (1.35 - 1.06) s = 0.09 MODA = 1.24 MEDIANA = 1.22</td>
</tr>
<tr>
<td>ESINA</td>
</tr>
<tr>
<td>esina prossimale fissa, aderente, mediana, esina asintale</td>
</tr>
<tr>
<td>esina asintale</td>
</tr>
<tr>
<td>esina equatoriale</td>
</tr>
<tr>
<td>esina a contorno leggermente irregolare</td>
</tr>
<tr>
<td>es.pross.: MEDIA = 1.85 (0.80 - 1.20) s = 0.25 MODA = 2.00 MEDIANA = 2.00</td>
</tr>
<tr>
<td>es.aff.: MEDIA = 2.14 (1.30 - 1.50) s = 0.21 MODA = 2.00 MEDIANA = 2.00</td>
</tr>
<tr>
<td>es.dist.: MEDIA = 1.61 (1.20 - 1.50) s = 0.21 MODA = 0.50 MEDIANA = 0.50</td>
</tr>
<tr>
<td>es.min.: MEDIA = 1.37 (2.00 - 1.60) s = 0.33 MODA = 1.00 MEDIANA = 1.30</td>
</tr>
<tr>
<td>es.med.: MEDIA = 1.87 (4.00 - 1.50) s = 0.24 MODA = 2.00 MEDIANA = 2.00</td>
</tr>
<tr>
<td>es.max.: MEDIA = 2.56 (4.50 - 1.80) s = 0.52 MODA = 3.00 MEDIANA = 2.50</td>
</tr>
<tr>
<td>ATTACCO SACCA</td>
</tr>
<tr>
<td>E2c/Ec: MEDIA = 1.84 (2.67 - 1.34) s = 0.25 MODA = 1.75 MEDIANA = 1.75</td>
</tr>
<tr>
<td>DIMENSIONALI</td>
</tr>
<tr>
<td>Pc: MEDIA = 33.67 (39.50 - 25.00) s = 2.45 MODA = 35.00 MEDIANA = 34.00</td>
</tr>
<tr>
<td>Ec: MEDIA = 47.04 (50.00 - 36.00) s = 3.06 MODA = 47.00 MEDIANA = 47.50</td>
</tr>
<tr>
<td>E2c: MEDIA = 38.77 (45.50 - 30.00) s = 2.71 MODA = 40.00 MEDIANA = 49.00</td>
</tr>
</tbody>
</table>
Pinus mugo Turra

PERIMETRO - visione polare: i segmenti circolari; od ellittici; di 1/2 cerchio od ellisse.

PERIMETRO - visione equatoriale: i segmenti subcirculari; od ellittici.

FORMA:
- subobovati (3%)
- oblongo sferoidi (31%)
- prolati sferoidi (64.3%)
- subrotati (4%)
- subeuro-E (62%)
- eurite-E (33%)

d2/3/E1c: MEDIA = 1.04 (1.19- .87) s = .05 MODA = 1.00 MEDIANA = 1.04

E1s/E2s: MEDIA = .77 (.94- .61) s = .07 MODA = .77 MEDIANA = .79

E1s/E2c: MEDIA = .77 (.97- .63) s = .05 MODA = .75 MEDIANA = .77

ESINA:
- alveolare, alveoli a contorno +/− continuo.
- alveoli piccoli, contorno da polisomale
- a circolare.
- alveoli medi, contorno polisomale.
- alveoli grandi, contorno polisomale.

ha: MEDIA = 4.43 (5.50- 3.50) s = .47 MODA = 4.50 MEDIANA = 4.50

hr/dls: MEDIA = 1.34 (.20- .14) s = .05 MODA = .20 MEDIANA = .20

Av.rev.dbl: MEDIA = 1.56 (4.00- .50) s = .09 MODA = 1.50 MEDIANA = 1.50

Av.med.dbl: MEDIA = 2.90 (7.00- 1.00) s = .99 MODA = 3.00 MEDIANA = 3.00

Av.max.dbl: MEDIA = 5.63 (11.00- 3.00) s = 1.96 MODA = 6.00 MEDIANA = 5.50

SPOROGENE SACCHE:

Sx/E1s: MEDIA = 9.42 (14.00- 5.50) s = 1.71 MODA = 9.00 MEDIANA = 9.50

Sx/dls: MEDIA = 15.75 (20.00-11.50) s = 1.75 MODA = 16.00 MEDIANA = 16.00

Sx/E1s/E2s: MEDIA = .94 (.50-.19) s = .05 MODA = .92 MEDIANA = .94

Sx/dls/dls: MEDIA = .70 (.91- .54) s = .08 MODA = .76 MEDIANA = .70

ATTACCO SACCA:

As: MEDIA = 21.48 (29.00-13.00) s = 3.04 MODA = 22.00 MEDIANA = 22.00

E2s/As: MEDIA = 1.71 (2.31- 1.31) s = .20 MODA = 1.24 MEDIANA = 1.68

DIMENSIONI:

E1s: MEDIA = 27.73 (34.00-22.00) s = 2.40 MODA = 27.00 MEDIANA = 28.00

E2s: MEDIA = 34.14 (43.00-26.50) s = 2.94 MODA = 36.00 MEDIANA = 36.00

d1s: MEDIA = 22.78 (20.00-17.00) s = 2.42 MODA = 22.00 MEDIANA = 23.00

d2s: MEDIA = 28.70 (35.00-23.00) s = 2.40 MODA = 29.00 MEDIANA = 29.00

I.E.S.:

E1-euvisaccati: (14%), E1-euvisaccati: (98%)

E2-parvisaccati: (26%), E2-euvisaccati: (73%), E2-euvisaccati: (14)

E-parvisaccati: (32%), E-euvisaccati: (42%), E-maennisaccati: (42%)

I.E.S.-E1: MEDIA = 1.18 (1.35- 1.01) s = .07 MODA = 1.17 MEDIANA = 1.17

I.E.S.-E2: MEDIA = .93 (1.15- .81) s = .06 MODA = .94 MEDIANA = .94

I.E.S.-E: MEDIA = 1.10 (1.47- .85) s = .12 MODA = 1.17 MEDIANA = 1.10

I.E.S.-E1+E2s/E1c I.E.S.-E2/E2c I.E.S.-E2(E1sE2s)/E1c+E2c
Iconografia

Scala A: Figg. 1-4 — Scala B: Figg. 5-7
Figg. 1-4: visione distale a fuochi successivi.
Figg. 5-7: particolari - alveoli grandi (Fig. 5), alveoli medi (Fig. 6), alveoli piccoli (Fig. 7).

ACCORSI C.A., BANDINI MAZZANTI M. e FORLANI L.
Iconografia

Scala A: Figg. 1-5 — Scala B: Figg. 6-9
Figg. 1-3: visione equatoriale a fuochi successivi.
Figg. 4-5: visione prossimale a fuochi diversi.
Figg. 6-9: particolari - esina equatoriale (Fig. 6); esina al polo prossimale (Fig. 7); esina prossimale in sezione ottica (Fig. 8); altezza del sistema alveolare (Fig. 9).

ACCORSI C.A., BANDINI MAZZANTI M. e FORLANI L.
FLORA PALINOLÓGICA ITALIANA

FINER

Finus nigra Arnold

EBANO PALINOSCOPO ISTITUTO BOTANICO Bologna n.55

Resia (E2) n.1600 02.07.27

I. MANI

II. SIMMETRIA

- bilaterali

III. POLARITÀ

- eteronemici

IV. PERIMETRO - visione solare

- forma complessa formata dalla intersezione di un ellisse o di un cerchio con due segmenti circolari o ellittici.

V. PERIMETRO - visione equatoriale

- forma complessa formata da un trapezoide (con lenti obliquo) inserito fra due segmenti circolari o ellittici.

VI. FORMA

- vescicolate-bisaccati
- pseudo-erosiatici (3%)
- pseudo-obsiatici (97%)
- e tero-E (100%)

VII. APERTURE

- monotelici-analitici
- NPL = 131

VIII. APERTURE - zona termelata

- di forma rettangolare, +/- filata, sita al polo distale, tra le sacche.

IX. DIMENSIONI

- su 100 granuli

X. GRANULI ANIMALI

- su 1000 granuli

- subisaccati (2.7%)

XI. RAPPORTI SUL GRANULO INTERI

- P.C./Pt: MEDIA = 0.69 (0.00 - 0.00) s = 0.06 MODA = 0.06 MEDIANA = 0.06
- E.C./Ett: MEDIA = 0.65 (0.00 - 0.00) s = 0.06 MODA = 0.06 MEDIANA = 0.06
- L.C./Ett: MEDIA = 0.09 (0.00 - 0.00) s = 0.07 MODA = 0.09 MEDIANA = 0.09

87
CORPO

FINES NARVA AROLLO

PERIMETRO: visione polare
- circolari (22%)
- subcirculari (11%)
- ovali (74%)
- allittici (10%)

PERIMETRO: visione equatoriale
- trapeziali

FORMA
- pseudo-eroblastici (1%)
- pseudo-oblattici (93%)
- pseudo-suboblattici (4%)
- saeque-E (13%)
- subetoro-E (74%)
- etero-E (93%)

Pc/E1c
- MEDIA = 1.65 (0.60-0.84) μ = 0.64
- MODA = 0.69
- MEDIANA = 0.64

Pc/E2c
- MEDIA = 0.81 (1.02-0.64) μ = 0.66
- MODA = 0.81
- MEDIANA = 0.81

E1c/E2c
- MEDIA = 1.25 (1.55-1.00) μ = 0.99
- MODA = 1.21
- MEDIANA = 1.24

ESINA
- esina progressale tectata, alveolare
- esina distale papillata, esina equatoriale
- circonferenza irregolare

es.fross.
- MEDIA = 2.83 (4.00-1.80) μ = 0.50
- MODA = 3.00
- MEDIANA = 3.00

cm
- MEDIA = 3.62 (6.00-2.00) μ = 0.89
- MODA = 3.00
- MEDIANA = 3.00

es.dist.
- MEDIA = 0.76 (1.50-0.50) μ = 0.19
- MODA = 1.00
- MEDIANA = 1.00

es.min.
- MEDIA = 2.84 (3.00-1.30) μ = 0.44
- MODA = 2.00
- MEDIANA = 2.00

es.med.
- MEDIA = 4.70 (4.00-2.00) μ = 0.44
- MODA = 3.00
- MEDIANA = 2.00

es.nax.
- MEDIA = 4.70 (8.30-4.00) μ = 0.86
- MODA = 5.00
- MEDIANA = 4.50

MITACCO SAGG

E2c/Ac
- MEDIA = 1.84 (2.28-1.24) μ = 0.23
- MODA = 1.78
- MEDIANA = 1.81

DIMENTIONI

Pc
- MEDIA = 34.00 (49.00-25.00) μ = 4.99
- MODA = 30.00
- MEDIANA = 33.50

E1c
- MEDIA = 52.43 (70.00-40.00) μ = 6.47
- MODA = 55.00
- MEDIANA = 52.00

E2c
- MEDIA = 42.18 (56.00-25.00) μ = 4.83
- MODA = 37.00
- MEDIANA = 41.00
SACHE

Pingo nigra Arnold

PEIKMETRO - visione laterale: segmenti circolari ed ellittici di un 1/2 cerchio od ellisse.

FORMA
- oblitro sferoidi (29%)
- oblitro sferoidi (57.5%)
- subellittici (13.5%)
- subellittici (61.0%)
- subellittici (7.0%)

es/Eis: MEDIA = 1.05 (1.05 - 1.06) σ = .07 MODA = 1.00 MEDIANA = 1.05

dis/dis: MEDIA = .09 (1.13 - .06) σ = .09 MODA = .96 MEDIANA = .98

Eis/E2z: MEDIA = .74 (.65 -.65) σ = .04 MODA = .73 MEDIANA = .73

ESINA
- a livello, a contorno polisoma-le continuo.

ha: MEDIA = 6.48 (6.00 - 4.50) σ = .78 MODA = 6.00 MEDIANA = 6.00

a/s: MEDIA = .25 (.31 - .14) σ = .08 MODA = .15 MEDIANA = .15

a.s.par: MEDIA = 2.63 (5.00 - 1.00) σ = .57 MODA = 3.00 MEDIANA = 3.00

a.s.med. MEDIA = 4.30 (6.00 - 2.00) σ = 1.07 MODA = 4.00 MEDIANA = 4.00

a.s.min. MEDIA = 7.65 (15.00 - 3.00) σ = 2.07 MODA = 7.00 MEDIANA = 7.00

SPOEREBE SACCHE

me/n: MEDIA = 14.06 (20.00 - 6.00) σ = 2.65 MODA = 13.00 MEDIANA = 14.00

Sn: MEDIA = 33.62 (30.00 - 15.00) s = 2.88 MODA = 23.00 MEDIANA = 23.00

Snl: MEDIA = .42 (.63 - .21) s = .08 MODA = .29 MEDIANA = .41

Snl: MEDIA = .75 (.92 - .24) s = .07 MODA = .72 MEDIANA = .75

ATTACCO SACCA

A: MEDIA = 13.27 (13.00 - 15.00) s = 3.27 MODA = 13.00 MEDIANA = 13.00

E2/E2: MEDIA = 2.00 (2.72 - 1.56) s = .24 MODA = 2.00 MEDIANA = 2.00

DIMENSIONI

Eis: MEDIA = 33.92 (44.00 - 24.00) σ = 3.47 MODA = 30.00 MEDIANA = 34.02

Ez: MEDIA = 46.58 (62.00 - 32.50) σ = 4.76 MODA = 44.00 MEDIANA = 44.00

Ei: MEDIA = 31.58 (35.00 - 21.50) σ = 3.33 MODA = 31.00 MEDIANA = 31.50

E2: MEDIA = 35.69 (44.50 - 26.00) σ = 3.74 MODA = 30.00 MEDIANA = 35.00

I.E.S.

E1-euissacchiati (11%), E1-muoviisacchiati (99%)

E2-euissacchiati (59%), E2-muoviisacchiati (41%)

I.E.S.-E1: MEDIA = 1.20 (1.99 - .99) σ = .12 MODA = 1.20 MEDIANA = 1.20

I.E.S.-E2: MEDIA = 1.09 (1.29 - .70) σ = .09 MODA = 1.05 MEDIANA = 1.07

I.E.S.-E: MEDIA = 1.44 (2.04 - .91) σ = .33 MODA = 1.36 MEDIANA = 1.40

I.E.S.-E1/E2/E1c I.E.S.-E2/Ez/E2c I.E.S.-E1/E2/E1c I.E.S.-E2/Ez/E2c
Iconografia

Scala A: Figg. 1-3 — Scala B: Figg. 4-7
Figg. 1-3: visione distale a fuochi successivi.
Figg. 4-7: particolari - altezza del sistema alveolare (Fig. 4); alveoli grandi (Fig. 5); alveoli medi (Fig. 6); alveoli piccoli (Fig. 7).

ACCORSI C.A., BANDINI MAZZANTI M. e FORLANI L.
Iconografia

Scala A: Figg. 1-4 — Scala B: Figg. 5-9

Figg. 1, 2: visione prossimale a fuochi diversi,
Figg. 3, 4: visione equatoriale a fuochi diversi.
Figg. 5-9: particolari - esina al polo prossimale (Figg. 5); esina equatoriale (Figg. 6, 7); esina prossimale (Figg. 8); esina distale (Fig. 9).

ACCORSI C. A., BANDINI MAZZANTI M. e FORLANI L.
FLORA PALINLOGICA ITALIANA
Brassicaceae

Lunaria annua L.
Erbario Palinologico Istituto Botanico Bologna n. 40
Pievo di Staffe (Mo) 15.04.78

RAGGRUPPAMENTO
- monadi

SIMMETRIA
- radiale

POLARITA'
- isopolar (100.0%)°

PERIMETRO - visione polare
- trilobi, eificreti

PERIMETRO - visione equatorial
- subcirculari (44.0%) ovali (50.0%)
- ellittici (6.0%)

FORMA
- prolato sferoidali (44.0%)
- sferoidali (50.0%)
- prolati (6.0%)

P/E
- MEDIA = 1.18 (1.50-1.07) s = 0.08 MODA = 1.17 MEDIANA = 1.17

APERTURE
- tricolpati (97.0%) NPC = 343
dissimilpati (3.0%) NPC = 243

APERTURE - colo
- lunghi, stretti, limiti netti, apici acuti.

P-c
- MEDIA = 20.00 (23.1-16.9) s = 1.54 MODA = 19.3 MEDIANA = 20.0
E-c
- MEDIA = 1.40 (2.3-1.6) s = 0.46 MODA = 1.5 MEDIANA = 1.5
Meso
- MEDIA = 16.10 (21.0-12.1) s = 2.56 MODA = 15.9 MEDIANA = 15.4
LTP
- MEDIA = 8.20 (16.0-4.6) s = 2.63 MODA = 7.7 MEDIANA = 7.7
P/E-c
- MEDIA = 1.39 (1.53-1.22) s = 0.08 MODA = 1.40 MEDIANA = 1.39
IAP
- MEDIA = 0.38 (0.66-0.21) s = 0.16 MODA = 0.32 MEDIANA = 0.35

EGINA
- reticolata, muri simili quadrati, lamina decrescente dall'ano verso il mesocolfium.

Ex
- MEDIA = 2.39 (3.0-1.6) s = 0.35 MODA = 2.3 MEDIANA = 2.3
Sect.
- MEDIA = 1.51 (2.2-0.8) s = 0.32 MODA = 1.5 MEDIANA = 1.5
Necro
- MEDIA = 0.69 (1.0-0.6) s = 0.19 MODA = 0.8 MEDIANA = 0.8
Sec/Meso
- MEDIA = 1.74 (3.00-1.00) s = 0.60 MODA = 1.50 MEDIANA = 1.88
Lung/Ano
- MEDIA = 0.67 (1.6-0.4) s = 0.34 MODA = 0.8 MEDIANA = 1.0
Muri-Ano
- MEDIA = 1.43 (2.3-0.8) s = 0.43 MODA = 1.5 MEDIANA = 1.5
Muri-Meso
- MEDIA = 1.29 (1.5-1.0) s = 0.82 MODA = 1.0 MEDIANA = 1.0

DIMENSIONI:
- su 30 granuli

P
- MEDIA = 27.61 (31.6-24.2) s = 4.40 MODA = 26.4 MEDIANA = 27.5
E
- MEDIA = 23.52 (26.0-17.8) s = 4.40 MODA = 24.3 MEDIANA = 23.9

I dati biometrici si riferiscono ai soli granuli tricolpati.
Iconografia

Scala A: Figg. 1-9 — Scala B: Figg. 10-13
Figg. 1-7: granulo tricolpato-visione polare (Figg. 1-3); visione equatoriale con mesocolpium (Figg. 4,5) e con colpus (Figg. 6,7).
Figg. 8-9: granulo disincilpato.
Figg. 10-13: particolari - esina equatoriale (Figg. 10,11); colpus (Fig. 12); triangolo polare (Fig. 13).

ACCORSI C.A., BANDINI MAZZANTI M. e FORLANI L.
FLORA PALINLOGICA ITALIANA

Brassicaceae

Brassica

- **Bunias rupestris** L.
- **Brassica**

ERBARIUM PALINLOGICO Istituto Botanico Bologna n. 15

BARBANO (BG) 15.04.78

RANGHIIPAMEMENTO: monotipici

SIMMETRIA: radiale

POLARITÀ: isopolarie

PERIMETRO - visione polare: trilobati, pitocotomi.

PERIMETRO - visione equatoriale: circolari (18.0%), subcirculari (66.0%), ovali (14.0%), ellittici (2.0%).

FORMA: ablati (2.0%), subablati (4.0%), ablati sferoidali (40.0%), prolato sferoidale (36.0%), subprolati (8.0%).

P/E: MEDIA = 1.01 (1.24-0.74) s = .11 MODA = 1.00 MEDIANA = 1.30

APERTURA: 1 trilocellati

FORMA: NFC = 343

P-C: MEDIA = 18.00 (24.4-11.1) s = 2.95 MODA = 16.7 MEDIANA = 17.6

E-C: MEDIA = 3.16 (2.6-3.1) s = 1.32 MODA = 2.2 MEDIANA = 2.0

Mes: MEDIA = 15.08 (17.8-11.1) s = 1.61 MODA = 14.0 MEDIANA = 15.0

LTP: MEDIA = 6.22 (7.8-4.4) s = .86 MODA = 5.2 MEDIANA = 6.5

P/F-C: MEDIA = 1.37 (1.71-1.19) s = .12 MODA = 1.33 MEDIANA = 1.33

INF: MEDIA = .26 (.36-.19) s = .04 MODA = .23 MEDIANA = .26

EDIFICA: reticolata, muri similbaculati, stretti, lumina omobrocati.

DIMENSIONE: lunghezza, larghezza, lunghezza estremità, nodi, apex acuti profondamente infossati.

Cephalium: MEDIA = 2.38 (3.1-1.9) s = .26 MODA = 2.0 MEDIANA = 2.2

Cephalium: MEDIA = 1.41 (2.0-1.1) s = .20 MODA = 1.2 MEDIANA = 1.3

Neciphalium: MEDIA = .97 (1.1-.6) s = .19 MODA = .9 MEDIANA = .9

Encephalium: MEDIA = 2.06 (3.3-2.2) s = .21 MODA = 2.0 MEDIANA = 2.0

Neciphalium: MEDIA = 1.83 (2.2-1.3) s = .29 MODA = 1.7 MEDIANA = 1.7

Neciphalium: MEDIA = 1.06 (1.4-.6) s = .10 MODA = 1.0 MEDIANA = 1.0

Encephalium: MEDIA = .83 (1.00-.61) s = .10 MODA = .79 MEDIANA = .81

Secaline/Secaline: MEDIA = 1.47 (2.03-1.00) s = .20 MODA = 1.44 MEDIANA = 1.44

Secaline/Secaline: MEDIA = 1.73 (2.50-1.10) s = .31 MODA = 1.25 MEDIANA = 1.25

Lamina: MEDIA = .90 (1.7-.5) s = .28 MODA = .8 MEDIANA = .9

Hypocotyl: MEDIA = 1.19 (2.1-.6) s = .40 MODA = 1.1 MEDIANA = 1.1

Hypocotyl: MEDIA = .71 (1.14-.09) s = .61 MODA = .11 MEDIANA = .11

DIMENSIONI: su 50 granuli

P: MEDIA = 24.24 (31.6-16.7) s = 2.97 MODA = 22.2 MEDIANA = 24.6

E: MEDIA = 24.29 (28.9-17.4) s = 1.91 MODA = 24.4 MEDIANA = 24.4
Iconografia
Scala A: Figg. 1-8 — Scala B: Figg. 9-13
Figg. 1-8: granulo tricolpato - visione polare (Figg. 1-3); visione equatoriale con mesocolpium (Figg. 4-6) e con colpus (Figg. 7, 8).
Figg. 9-13: particolari - colpus (Fig. 9); reticolo nell'apocolpium (Fig. 10) e nel mesocolpium (Fig. 12); estina equatoriale (Fig. 11) e polare (Fig. 13).

FORLANI L. e DE LEONARDIS W.
FLORA PALMILOLOGICA ITALIANA

Cereis milliumstraum L.

Castaelpiniae

P

RAGGRUPPAMENTO

<table>
<thead>
<tr>
<th>radiisimmetrici</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLARITA'</td>
</tr>
<tr>
<td>isopolarri</td>
</tr>
</tbody>
</table>

PERIMETRO

- visione laterale: substrincolari, obvistemi
- visione evolutabile: circolari (36.0%), subcircolari (52.0%), ovali (10.0%)

FORMA

- oblato sferoidale (12.0%)
- rotato sferoidale (78.0%)
- subrotato (10.0%)

P/C

- MEDIA = 1.08 (1.20-1.96) s = .45 MODA = 1.00 MEDIANA = 1.00

APERTURE

- tricolored (72.0%) NPC = 245
 - tricolpocoidali (20.0%) NPC = 345

APERTURE - color

- lunghi, stretti, arici acuti, bordini irregolari, margini ispesiti.

P-c

- MEDIA = 19.57 (22.0-17.0) s = 1.02 MODA = 20.0 MEDIANA = 20.0

E-c

- MEDIA = 1.59 (2.2-1.0) s = .41 MODA = 2.0 MEDIANA = 1.7

LTP

- MEDIA = 6.44 (9.0-4.7) s = .97 MODA = 8.0 MEDIANA = 6.5

P/P-c

- MEDIA = 1.27 (1.37-1.17) s = .06 MODA = 1.25 MEDIANA = 1.25

LAF

- MEDIA = .20 (.41-.23) s = .04 MODA = .29 MEDIANA = .29

APERTURE - ora

- isolabili, contorno da irregolare a residolare da subcircolare ad ellittico.

P-os

- MEDIA = 3.26 (.69-1.1) s = 1.30 MODA = 2.2 MEDIANA = 3.3

P-c/P-os

- MEDIA = 7.09 (18.18-3.23) s = 3.32 MODA = 6.06 MEDIANA = 6.10

E-c/E-os

- MEDIA = 1.08 (2.00-1.93) s = .24 MODA = 1.00 MEDIANA = 1.00

P-os/E-os

- MEDIA = 2.19 (4.17-1.93) s = .71 MODA = 2.00 MEDIANA = 2.10

ESINA

- reticolata, columnellae corti e distinctive, ombrocalca.

Exp

- MEDIA = 1.62 (2.0-1.4) s = .20 MODA = 1.4 MEDIANA = 1.6

Ner

- MEDIA = .99 (1.6-1.2) s = .16 MODA = .8 MEDIANA = .7

Ne

- MEDIA = 1.66 (2.0-1.6) s = .16 MODA = 1.7 MEDIANA = 1.7

Ner/Ner

- MEDIA = .99 (1.3-1.7) s = .16 MODA = 1.00 MEDIANA = 1.00

Seer/Ner

- MEDIA = .80 (1.00-1.0) s = .14 MODA = .75 MEDIANA = .75

Seer/Ner/Ner

- MEDIA = .70 (1.00-1.2) s = .14 MODA = .55 MEDIANA = .75

Lum-Aro

- (1.0)

Lum-Mes

- MEDIA = .99 (1.0-.5) s = .03 MODA = 1.0 MEDIANA = 1.0

Lum-Mes

- (1.0)

IE

- MEDIA = .07 (.06-.06) s = .01 MODA = .07 MEDIANA = .07

DIMENSIONI

<table>
<thead>
<tr>
<th>s su 50 granuli</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
</tr>
<tr>
<td>MEDIA = 24.79 (27.0-22.2) s = 1.11 MODA = 25.0 MEDIANA = 25.0</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>MEDIA = 23.06 (25.1-22.0) s = .93 MODA = 22.3 MEDIANA = 23.3</td>
</tr>
</tbody>
</table>
Cercis siliquastrum L.

Iconografia

Scala A: Figg. 1-10 — Scala B: Figg. 11-18

Figg. 1-10: granulo tricolporato - visione polare (Figg. 1-4); visione equatoriale con mesocolpium (Figg. 5-8) e con apertura composta (Figg. 9,10).

Figg. 11-18: particolari - esina equatoriale (Fig. 11); esina polare (Fig. 12); apertura in visione polare (Fig. 13); apertura composta in visione equatoriale (Figg. 14,15); triangolo polare (Fig. 16); reticolo nel mesocolpium (Figg. 17,18).

FORLANI L. e DE LEONARDIS W.
<table>
<thead>
<tr>
<th>FLORA PALINOLGICA ITALIANA</th>
<th>878</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cistus incanus L.</td>
<td></td>
</tr>
<tr>
<td>Erbario Palinologico Istituto Botanico Roma n. 5</td>
<td></td>
</tr>
<tr>
<td>Livorno 30.05.67</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIORI GRUPPO I</th>
<th>1 monadi</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMMETRIA</td>
<td>1 radiosimmetrici</td>
</tr>
<tr>
<td>POLARITA'</td>
<td>1 isopolar (92.0%) 2 isopolar (8.0%)</td>
</tr>
<tr>
<td>PERIMETRO</td>
<td>1 circolari; peritroce o lessivamente ricotreti</td>
</tr>
<tr>
<td>PERIMETRO</td>
<td>1 subcircolari (20.0%)</td>
</tr>
<tr>
<td>FORMA</td>
<td>1 oblati sferoidali (48.0%) 1 ovati (4.0%)</td>
</tr>
<tr>
<td>P/E</td>
<td>1 media = 1.02 (1.15 - 0.86) s = 0.06 moda = 1.05 media = 1.03</td>
</tr>
<tr>
<td>APERTURE</td>
<td>1 tricolporati (72.0%) 1 dicolporati-singolati ad un polo (4.0%) NPE = 345</td>
</tr>
<tr>
<td>APERTURE</td>
<td>1 tricolporati-singolati ad un polo (4.0%) NPE = 245</td>
</tr>
<tr>
<td>APERTURE</td>
<td>1 lunosi; stratti; marini; diritti c paralleli; lessivamente irregolari; arti acuti</td>
</tr>
<tr>
<td>P-c</td>
<td>1 media = 36.63 (34.0 - 32.0) s = 2.61 moda = 40.0 media = 38.5</td>
</tr>
<tr>
<td>E-c</td>
<td>1 media = 3.05 (3.0 - 2.0) s = 2.46 moda = 2.4 media = 2.4</td>
</tr>
<tr>
<td>Marsi</td>
<td>1 (0.0 - 1.0)</td>
</tr>
<tr>
<td>LTP</td>
<td>1 media = 3.45 (3.9 - 2.5) s = 2.89 moda = 3.0 media = 3.1</td>
</tr>
<tr>
<td>LF</td>
<td>1 media = 1.04 (1.03 - 1.07) s = 0.05 moda = 1.04 media = 1.03</td>
</tr>
<tr>
<td>IAP</td>
<td>1 media = 1.17 (0.27 - 1.1) s = 0.04 moda = 0.15 media = 0.17</td>
</tr>
<tr>
<td>APERTURE</td>
<td>1 da lattome a lattome, contorni da circolare ad ellittico</td>
</tr>
<tr>
<td>P-os</td>
<td>1 media = 6.20 (6.0 - 4.0) s = 1.12 moda = 6.0 media = 6.0</td>
</tr>
<tr>
<td>E-os</td>
<td>1 media = 6.44 (6.0 - 3.2) s = 1.28 moda = 7.0 media = 6.0</td>
</tr>
<tr>
<td>Marsi</td>
<td>1 (0.0 - 1.0)</td>
</tr>
<tr>
<td>P-c/P-os</td>
<td>1 media = 4.37 (10.13 - 4.6) s = 1.26 moda = 6.42 media = 6.33</td>
</tr>
<tr>
<td>F-or/E-os</td>
<td>1 media = 0.92 (1.25 - 0.6) s = 0.15 moda = 1.0 media = 1.0</td>
</tr>
<tr>
<td>E-c/E-os</td>
<td>1 media = 0.22 (0.47 - 0.11) s = 0.08 moda = 0.14 media = 0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESINA</th>
<th>1 reticolata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eex</td>
<td>1 media = 0.19 (3.2 - 1.5) s = 0.49 moda = 3.0 media = 2.0</td>
</tr>
<tr>
<td>Shp</td>
<td>1 media = 1.15 (1.6 - 0.8) s = 0.25 moda = 1.0 media = 1.0</td>
</tr>
<tr>
<td>Mee</td>
<td>1 media = 0.79 (1.6 - 0.5) s = 0.23 moda = 1.0 media = 1.0</td>
</tr>
<tr>
<td>ice</td>
<td>1 media = 2.63 (3.2 - 1.5) s = 0.37 moda = 3.0 media = 2.5</td>
</tr>
<tr>
<td>sete</td>
<td>1 media = 1.35 (2.9 - 1.6) s = 0.39 moda = 2.0 media = 2.0</td>
</tr>
<tr>
<td>seta</td>
<td>1 media = 1.54 (2.2 - 1.0) s = 0.24 moda = 2.5 media = 2.5</td>
</tr>
<tr>
<td>Eex/Eex</td>
<td>1 media = 0.83 (0.76 - 0.54) s = 0.17 moda = 1.0 media = 1.0</td>
</tr>
<tr>
<td>Shp/Neve</td>
<td>1 media = 1.20 (2.00 - 0.80) s = 0.31 moda = 1.0 media = 1.0</td>
</tr>
<tr>
<td>Sice/Neve</td>
<td>1 media = 1.46 (5.00 - 0.80) s = 0.44 moda = 2.5 media = 2.5</td>
</tr>
<tr>
<td>Lun-Apo</td>
<td>1 (0.0 - 1.0)</td>
</tr>
<tr>
<td>Muri-Apo</td>
<td>1 (0.0 - 1.0)</td>
</tr>
<tr>
<td>Muri-Mes</td>
<td>1 (0.0 - 1.0)</td>
</tr>
<tr>
<td>IE</td>
<td>1 media = 0.08 (.08 - 0.04) s = 0.01 moda = 0.00 media = 0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIMENSIONI</th>
<th>1 s 30 granuli</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1 media = 49.30 (50.0 - 38.0) s = 3.05 moda = 42.0 media = 43.0</td>
</tr>
<tr>
<td>E</td>
<td>1 media = 42.44 (50.0 - 36.5) s = 2.70 moda = 44.5 media = 43.0</td>
</tr>
</tbody>
</table>

I dati biometrici si riferiscono ai soli granuli tricolporati.
Cistus incanus L.

Iconografia

Scala A: Figg. 1-10 — Scala B: Figg. 11,12 — Scala C: Figg. 13-16

Figg. 1-8: granulo tricolporato - visione polare (Figg. 1-3); visione equatoriale con mesocolpium (Figg. 4-6) e con apertura composta (Figg. 7,8).

Figg. 9,10: granulo tricolporato sincolpato ad un polo, in visione polare (Fig. 9); granulo disincolpato in visione equatoriale (Fig. 10).

Figg. 11-16: particolari - apertura composta in visione equatoriale (Figg. 11,12) e in visione polare (Fig. 13); triangolo polare (Fig. 14); reticolo nel mesocolpium (Fig. 15); estina in sezione ottica (Fig. 16).

ACCORSI C.A., BANDINI MAZZANTI M. e FORLANI L.
<table>
<thead>
<tr>
<th>Carattere</th>
<th>Media</th>
<th>Deviazione Media</th>
<th>Media Assi</th>
<th>Media Massa</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (cm)</td>
<td>2.14 (1.6 - 3.5)</td>
<td>= 2.93 M0 = 2.40 MEDIANA = 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P/0</td>
<td>1.42 (1.2 - 1.6)</td>
<td>= 1.96 M0 = 1.32 MEDIANA = 1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P/5</td>
<td>1.33 (1.0 - 1.6)</td>
<td>= 1.95 M0 = 1.04 MEDIANA = 1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESIDEA</td>
<td>1.60 (1.3 - 1.9)</td>
<td>= 1.76 M0 = 1.1 MEDIANA = 1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUN-Res</td>
<td>1.39 (1.2 - 1.5)</td>
<td>= 1.76 M0 = 1.3 MEDIANA = 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUN-Mes</td>
<td>1.28 (1.2 - 1.5)</td>
<td>= 1.76 M0 = 1.32 MEDIANA = 1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUN-Res</td>
<td>1.39 (1.2 - 1.5)</td>
<td>= 1.76 M0 = 1.32 MEDIANA = 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUN-Mes</td>
<td>1.28 (1.2 - 1.5)</td>
<td>= 1.76 M0 = 1.32 MEDIANA = 1.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I dati biometrici si riferiscono ai soli granuli dicoltati.
Iconografia

Scala A: Figg. 1-6, 10-12 — Scala B: Figg. 7-9
Figg. 1-6: granulo dicolfato - visione polare (Figg. 1-3); visione equatoriale con colpus (Figg. 4,5) e con mesocolpium (Fig. 6).
Figg. 7-9: particolari - apocolpium (Fig. 7); colpus (Fig. 8); esina in sezione ottica (Fig. 9).
Figg. 10-12: granulo dicolfato, sincolfato ad un polo, in visione polare.

ACCORSI C.A., BANDINI MAZZANTI M. e FORLANI L.
BIBLIOGRAFIA

ACCOLSI C.A., 1972, Presentazione di schede per una Flora Patinologica Italiana. Infor-
matorie Botaniche, 26: 76.
ACCOLSI C.A. e BANNINI MAZZANTI M., 1980, Studi sui pollini allergeni. - Partietaria officinalis L. e P. radiata L.: posizione sistematica, morfologia e biometria del pol-
line. Webbia, 34: 643-661.
ACCOLSI C.A., BANNINI MAZZANTI M. e FORLANI L., 1978, Modello di schede paleo-
palinologiche di Pini italiani (Pinus cembra L., Pinus pinea L., Pinus sylvestris L. subsp.
ACCOLSI C.A. e FORLANI L., 1976, Schede per una Flora Patinologica Italiana. Contribu-
ACCOLSI C.A. e MANFREDINI R., 1981, Aumento di granuli pollinici anomali e di infio-
resso maschili anomale in castagni colpiti dal «cancer della sorteccia». Inform.
Fizopat. 31: 17-22.
ARAKI D.P., 1970, Some palynological applications of multivariate statistics. Ph. D.
AIELLO M. e PICCONE V., 1980, Dendroplot in AppleSoft Basic (Dattiloscrittore).
ARONNA D., 1976, Raccolte della costa tirrenica. In «Schede per una Flora Patinologica
AYUGU B., 1960, Quelques mensurations des pollens de Pinus sylvestris L. Pollen et
Spores, 2: 305-309.
AYUGU B., 1967, Morphologie des pollens et recherches palynologiques sur les Gymno-
spermes des Turquie les plus importantes. Instanbul.
BANON MAZZANTI M. e FORLANI L., 1982, Schede palinologiche in versione acellulariz-
e e fresca per Medicina, Aeropalinologia, Farmacognosia e Melissopalinologia. Suppl.
BRAGGIO MURCIOCHI G. e DE VINCENTI L., 1980, Schede per una Flora Patinologica

Indirizzi degli autori:

D. Bertolani Marchetti: Istituto Botanico, viale Caduti in Guerra n. 127 - Modena
M. Aiello, W. De Leonardis, V. Piccione: Istituto ed Orto Botanico dell'Università, via A. Longo n. 19, 95125 Catania
C.A. Accorsi, M. Bandini Mazzanti, L. Forlani: Istituto Botanico, via Irnerio, 42 - Bologna