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Abstract

Synchronous responses to climatic changes during the Late Pleistocene-Holocene transition are inferred from
marine and lacustrine stratigraphic records in the central Mediterranean region. New stratigraphic data are presented
from well-dated sequences in the Meso-Adriatic Depression (MAD), two crater lakes in the Lazio region, and in the
Tyrrhenian Sea. The sequences all span the last termination and the Holocene, but we focus here on the evidence in
each record for the time period during which sapropel S1 formed in the Mediterranean (ca. 9.0 to 6.8 cal kyr B.P.).
The new records provide evidence of palacoenvironmental changes on land and sea that can be reconstructed at a
high temporal resolution, and which throw some light on the processes which led to the formation of S1. The
collective evidence indicates that: (i) organic-rich sediments occurred in both the marine and the crater lake sites
during the time of formation of the S1 sapropel; (ii) there is evidence of increased stratification and anoxia in the
sea-water column during the period of S1 formation; (iii) the S1 period in the study area is divisible into two sub-
phases (Sla and S1b), which reflect short-term variations in oceanographic conditions (stratification and anoxia); (iv)
changes in stratification in the marine column were contemporaneous with regional climate variations that are inferred
from the terrestrial records. We conclude that the key factor that initiated the formation of S1 was increased discharge
of freshwater into the Mediterranean following a change post-9.0 cal kyr B.P. to a warmer and wetter climate.
Furthermore, the period of S1 formation was interrupted by a short-lived episode (ca. 500 years) of comparatively
cooler and drier conditions during the Early-Middle Holocene transition (EMHT). © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Sapropels are distinctive layers of organic-rich
sediment commonly observed within marine sedi-
ment cores recovered from many localities
throughout the Mediterranean Basin (e.g.
Olausson, 1961; Ryan, 1972; Cita et al., 1977; Cita
and Grignani, 1982; Vergnaud-Grazzini et al.,
1986; van Straaten, 1972, 1985; Thunell et al.,
1977). A number of sapropel layers have been
observed in marine sedimentary sequences that
extend over several glacial-interglacial cycles,
which suggests that the conditions under which
sapropels form are linked, directly or indirectly,
to Quaternary climate forcing mechanisms. Early
theories on their mode of formation proposed that
increased precipitation and freshwater run-off
during glacial intervals led to stagnation in the
water-column and hence rapid accumulation of
organic detritus (Bradley, 1938; Kullenberg, 1952).
More recent theories, based on multi-proxy palaeo-
environmental investigations, link the formation
of sapropels to changes in stratification and/or the
chemistry of the water column, which are thought
to lead to increased anoxia in bottom water,
increased primary productivity, and more complete
preservation of organic matter (e.g. Rossignol-
Strick et al., 1982; Calvert et al., 1992; Howell and
Thunell, 1992; Sancetta, 1994; Rohling, 1994).
Others (e.g. Jan Bosch et al., 1997) consider that
sapropels are formed by anoxia in the photic zone.

The most recent (Holocene) sapropel (S1),
widespread throughout the eastern Mediterranean
Basin and the Adriatic but less well-developed in
the western Mediterranean, formed between ca.
9.8 and 6.8 cal kyr B.P. However, this is a simplifi-
cation, because what is termed the ‘S1 layer’ is
often a complex feature, one that is difficult to
detect in some places because it is susceptible to
extensive oxidation, resulting in considerable thin-
ning, or even its complete removal (van Straaten,
1972). Where this is observed, the terms ‘missing
sapropel’ or ‘sapropel-like’ sediment are often
employed (Higgs et al., 1994; Thomson et al.,
1995; van Santvoort et al., 1997). Furthermore,
Rohling et al. (1997) and De Rijk et al. (1999)
have shown that sapropel S1 is not a continuous
feature in the eastern Mediterranean, and they

concluded that conditions necessary for sapropel
formation were discontinuous during the period in
which sapropel S1 was formed. The formation of
sapropels may thus be sensitive to subtle changes
in palaecoceanographic conditions, which in turn
depend on regional climatic variations (see e.g.
Kallel et al., 1997a,b).

During the last 20,000 years, the magnitude of
the influence of Atlantic waters flowing into the
Mediterranean through the Strait of Gibraltar has
not been constant due to changing sea levels.
The current consensus, however, is that the
Mediterranean circulation pattern was similar to
the modern one even during glacial stages (e.g.
Béthoux, 1984; Thunell et al., 1987). Nevertheless,
it is possible that short-term changes in circulation
occurred, altering the salinity of surface waters, as
a result of abrupt changes in sea-level and of
regional climate conditions during the last deglaci-
ation and the Holocene. Short-term salinity
changes and current reversals have been proposed
as possible ‘trigger’ mechanisms for sapropel for-
mation (Stanley, 1978; Sarmiento et al., 1988).

It is possible therefore that there is a close
association between sapropel formation and
regional climatic changes. However, this hypothe-
sis is difficult to test in any rigorous way because:
(i) most detailed studies of sapropels have been
concentrated in the eastern Mediterranean, and
comparatively few have been undertaken in other
parts of the Mediterranean Sea; (ii) studies of the
palaeoclimate of the Mediterranean area are pre-
dominantly based upon palynological data, and
few quantitative estimates of past climatic changes
have been made (Rossignol-Strick and Planchais,
1989; Aksu et al., 1995; Zonneveld, 1996); and
(i11) most studies have either focused on changes
in the sea water column (palacoceanographic
changes) or on terrestrial records, and very little
direct comparison between the two realms has
been reported (e.g. Rossignol-Strick and Planchais,
1989; Zonneveld, 1996).

In this paper we examine the extent to which
the S1 sapropel layer coincides with the evidence
for regional climatic changes in the Mediterranean
region. We present stratigraphical and palaeocli-
matic data from two marine and two terrestrial
sequences that have been securely dated and which
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can be correlated precisely. Sedimentary cores
extending over the Holocene and the last termina-
tion have been obtained from the Meso-Adriatic
Depression (MAD), two crater lakes in central
Italy (Lakes Albano and Nemi) and a Circum-
Tyrrhenian basin. Stratigraphical comparisons can
thus be made along a transect from the Adriatic,
through central Italy to the Tyrrhenian Sea. The
marine records are located close to the mainland,
facilitating land—sea correlations. Furthermore, we
adopt a multi-proxy approach to study the condi-
tions under which sapropel has formed on mar-
ginal areas where dark, organic-rich sediment
rarely occurs.

2. Study area and site locations

The Adriatic Basin is an elongated and narrow
epicontinental shelf that contains the MAD, an
almost-closed basin about 250 m deep (Fig.1).
This basin contains a continuous sequence of Late
Quaternary marine sediments (Trincardi et al.,
1996) because it remained subaqueous even during
the lowest eustatic sea level of the last glacial
maximum (LGM). The modern circulation
pattern is such that surface waters from the western
Mediterranean reach the Adriatic Sea via the
Ionian Gyre and the Strait of Otranto (e.g. Wust,
1961). Fresh, nutrient-rich waters are fed in from
the north by the Po River and this influx encour-
ages high primary productivity in the upper part
of the water column. The circulation of these
plumes of low-salinity Adriatic waters can be
detected along the coast of Italy as far south as
Sicily (Fig. 1; Artegiani et al., 1989, 1997; Orlic
et al., 1992). A subsurface contribution of LIW
also enters the Adriatic. Finally, cold and dense
waters are produced in winter by the action of the
cold and dry north-easterly Bora wind, which leads
to deep water flow to the Mediterranean via the
southern Adriatic Basin (Zore Armanda, 1963;
Artegiani et al., 1989).

The Tyrrhenian Sea occupies a small, triangular-
shaped back-arc basin. The basin comprises a
central, deep abyssal plain where new oceanic crust
forms, fringed by a narrow continental shelf and
complex slope, the latter indented by several minor

slope basins (Circum-Tyrrhenian basins) within
which sediment accumulation rates are high (see
Wezel et al., 1982; Trincardi et al., 1995). Modern
surface waters of the Tyrrhenian Sea are domi-
nated by the influx of less saline Atlantic waters
(Béthoux, 1984).

Lakes Albano and Nemi occupy two calderas
in the Albani Hills in Latium, central Italy, ca.
25 km south—east of Rome (Fig. 1). Both lakes
are hydrologically-closed basins, receiving water
mainly from precipitation and underwater springs
(Chondrogianni et al., 1996a). Lake Albano,
located at an altitude of ca. 293 m a.s.l., is the
largest and deepest of the two lakes, with an area
of 6 km?, and a maximum depth of 175 m. Located
at ca. 320 m a.s.l. altitude, Lake Nemi has an area
of 1.8 km?, and a maximum water depth of 32 m.

Extensive seismic surveys have been conducted
in the MAD and in the two crater lakes as part of
the PALICLAS project funded by the EU (Oldfield
and Guilizzoni, 1996). Sedimentary cores reco-
vered from various water depths at each site pro-
vide comprehensive stratigraphical information
which has been analysed for various fossil types,
sediment magnetic properties, stable isotope varia-
tions and major element geochemistry. A con-
tinuous high-resolution record of the last glacial—
Holocene transition and of the entire Holocene
has been obtained from core CM92-43 in the
MAD (Figs. 2 and 3). The multi-proxy data from
this core are compared with those obtained from
core MC82-12, which was recovered from the
Palinuro Circum-Tyrrhenian basin as part of
the CNR project ‘Oceanografia ¢ Fondi Marini’
(Wezel et al., 1982). The Tyrrhenian Sea core
provides a continuous marine record from marine
oxygen isotope Stage 2 until the present day
(Fig. 1).

Several cores up to 14 m long were retrieved
from Lakes Albano and Nemi in water depths
ranging between 77 and 252 m and between 30
and 20 m, respectively (Table 1). The sedimentary
infill in the two basins spans the period from
oxygen isotope Stage 3 to the present time
(Chondrogianni et al., 1996b). We present here
the data from each core sequence that provide the
best resolution of part of the last termination and
the Holocene. Core PALB94-3A, retrieved at
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Geographic location, water depths (or altitude above mean sea level ) for the cores discussed in the text and appropriate references

Core number  Coordinates Location Water References
depth (m)
CM92-43 14°43'N/42°53'E Central Adriatic 252 Ariztegui et al. (1996a); Asioli (1996);
Trincardi et al. (1996); this study

MC82-12 39°43'N/14°25'E Tyrrhenian Sea 1657 Tamburini et al. (2000); this study

(Palinuro Basin)
PALBY%4-3A see Chondrogianni et al.  Lake Albano at 293 m a.s.l. 120 Ariztegui et al. (1996b); this study

(1996a,b)
PNEMI%4-1B  see Chondrogianni et al.  Lake Nemi at 320 m a.s.l. 31 Chondrogianni et al. (1996a,b); this study
(1996a,b)
KS5 34°49'N/31°44'E Ride de Florence 1560 Znaidi Rivault (1982)
IN68-5 41°14'N/18°32'E Southern Adriatic 1030 Jorissen et al. (1993);
Capotondi et al. (1999)

IN68-9 41°47'N/17°54'E Southern Adriatic 1234 Rohling et al. (1997)
ADI1-17 40°52'N/18°38'E Southern Adriatic 844 Capotondi et al. (1999)
IN68-38 41°07'N/17°34'E Southern Adriatic 716 Jorissen et al. (1993)
KET8216 41°31'N/17°59'E Southern Adriatic 1166 Fontugne et al. (1989)
RC9-191 38°11'N/18°02'E Tonian Basin 2345 Fontugne et al. (1989)
KETS8222 37°56'N/16°53'E Tonian Basin 1691 Fontugne et al. (1989)
ET91-18 42°36'N/9°52'E Tyrrhenian Sea 651 Capotondi (1995)

(Corsica Basin)
BS78-13 42°22'N/9°53'E Tyrrhenian Sea 829 Benvenuti (1989)

(Corsica Basin)
AC85-4 41°45N/11°46E Tyrrhenian Sea 662 Capotondi et al. (1989)
TENAGHI Southern Macedonia Wijmstra (1969)
PHILIPPON (NE Greece) at 40 m a.s.l.

120 m water depth in Lake Albano, consists of
1200 cm of well-laminated and mostly fine-grained
(mud) deposits. Core PNEMI94-1B, recovered
from Lake Nemi at a water depth of 30 m, consists
of ca. 900 cm of fine-grained deposits, mainly with
diatom-rich, distinct laminations.

3. Methods

Subsamples for foraminiferal analysis were
extracted every 5 or 10 cm throughout the marine
cores. Since sediment accumulation rates were not
constant, however, the temporal resolution of the
foraminiferal records is variable. The subsamples
were weighed, washed and sieved with a mesh
width of 63 um (core CM92-43) or 125 um (core
MCS82-12) and then split into aliquots containing
at least 300 individuals each of planktic and bethic
taxa (Asioli, 1996; Tamburini et al., 1998). The

data are expressed as percentages of the total
number of planktic or benthic foraminifers.
Stable oxygen and carbon isotopic compositions
of selected planktic foraminifers were measured
following the standard procedures of the Stable
Isotopes Laboratory, ETH, Ziirich. The results are
reported as per mil deviation with respect to the
international standard V-PDB. The reproducibility
of the measurements is +0.1%o. Foraminiferal
samples were ultrasonically cleaned in order to
remove contamination and/or diagenetic alter-
ations, such as coccoliths, overgrowth and detrital
fill. Hand-picked foraminifers showing no signs of
diagenetic alteration were selected under a binocu-
lar microscope. None of the isotopic data pre-
sented here have been corrected for the ice volume
effect. Two planktic species were selected for iso-
topic measurement: Globigerina bulloides and the
near-surface-dwelling Globigerinoides ex gr. ruber.
The first species is present throughout the entire
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core sequences, while the second is missing from
some critical intervals of the record, such as, for
example, the sections assigned to the Younger
Dryas cold event (zone GS-1 of the GRIP ice-core
record — see Bjorck et al., 1998). Measurements
have also been obtained from one benthic species,
Bulimina marginata.

Sediment samples from both the Adriatic and
crater lake sediment sequence were prepared for
pollen analysis following the methodology
described by Lowe et al. (1996b). For the lake
sequences, pollen sums varying between 200 and
700 of ‘dry- land’ taxa have been adopted, and all
percentages are expressed as percentages of total
‘dry-land’ pollen. Because marine deposits fre-
quently contain very high percentages of conifer-
ous pollen, due to their resistance to
decomposition, ease of transport and buoyancy,
pollen of Pinus have been excluded from the pollen
sums of all the pollen diagrams presented here,
including those relating to the crater lake
sequences.

Variations in organic carbon content of the
Adriatic sediment sequence were measured using
a Fison CHN elemental analyser. Prior to measure-
ment, samples were treated with 2 N HCI to elimi-
nate the carbonate fraction. The hydrogen index
(HI), measured in the Lake Albano sediments and
expressed in milligrams hydrocarbon per gram of
organic carbon, is an estimate of the amount of
hydrogen contained in the hydrocarbon compo-
nent of sedimentary organic matter (i.e. chemical
quality of the organic matter). Extraction and
measurements of the concentrations of pigments
follows the methodology described by Ryves et al.
(1996). Total pigments were extracted with 90%
acetone and specific algal pigments were deter-
mined by ion pairing reverse-phase HPLC and
expressed as nanomole per gram organic matter.

Rock magnetic parameters are a diagnostic tool
for monitoring environmental changes in sedi-
mentary sequences, especially for identifying
intervals of reductive diagenesis such as sapropel
layers (e.g. Thompson and Oldfield, 1986; Oldfield,
1996; van Santvoort et al., 1997; Vigliotti, 1997).
Magnetic parameters from cores CM92-43 and
PNemi-1B were measured on discrete samples at
the palacomagnetic laboratory of the IGM,

Bologna. The low-field magnetic susceptibility was
measured using a Bartington MS1 susceptibility
meter. Anhysteretic remanence (ARM) was
induced in the sample by applying 99 mT of
alternating field and a 0.05 mT biasing field for
the Adriatic samples and 0.1 mT for the Nemi
samples. Isothermal remanence (IRM) was
induced up to 1 T. ARM and IRM were measured
using a JR-4 spinner magnetometer for the
CM92-43 samples, whereas a Minispin spinner
magnetometer was used for analysis of the Nemi
core.

4. Stratigraphic correlations and chronology

The marine cores can be correlated using oxygen
isotope stratigraphy and foraminiferal data. The
oxygen isotope stratigraphy for the last glacial—-
interglacial cycle from cores in the Mediterranean
Sea matches well the characteristic changes in the
Atlantic isotope record ( Vergnaud-Grazzini et al.,
1986, 1989). Indeed, the &0 signal in
Mediterranean cores also shows the two steps of
the last termination seen in some Atlantic cores
(Termination TA at 14.8-11.5 *C kyr B.P. and
Termination IB at 9.5 '*C kyr B.P., separated by
an interval of more positive oxygen isotopic com-
position between 10.0 and 11.0 *C kyr B.P;
Duplessy et al., 1981; Fairbanks, 1989). These
features can also be observed in the Adriatic and
Tyrrhenian cores discussed in this paper (Fig. 2),
while oxygen isotope Stages 1 and 2, along with a
reversal which is dated to the Younger Dryas (YD
or GS-1) event, are also clearly identifiable.

Several foraminiferal marker events, already
well-recognised for the central Mediterranean
(Jorissen et al., 1993; Capotondi, 1995; Asioli,
1996; Capotondi et al., 1999), were used to con-
strain the age of core MCS82-12 and to strengthen
the correlations between the Adriatic and
Tyrrhenian sites. This approach was preferred to
linear extrapolation between successive *C ages,
since that assumes linear sedimentation rates,
which are unlikely in this context. Some of the
sedimentary units in the Adriatic successions are
laterally discontinuous or have accumulated very
slowly, so that the temporal resolution of succes-
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sive units is highly variable (Trincardi et al., 1996).
Linear extrapolation between radiocarbon ages
may therefore result in spurious differences in age
between what are effectively time-parallel markers
(e.g. the biozone marker horizons) in the various
marine basins. The following is a summary of the
main foraminiferal marker events that were used
to establish correlations between the marine
sequences.

(1) A strong increase of Globigerinoides ex gr.
ruber, the near absence of Globorotalia scitula, an
increase of Globorotalia inflata and the appearance
of Globorotalia truncatulinoides all coincide at ca.
13.0 '*C kyr B.P. (ca. 14.5 cal kyr). The equivalent
event in the central Adriatic record is reflected in
an abrupt increase of G. ex gr. ruber only; G.
inflata and G. truncatulinoides were absent in the
MAD mainly because the shallow depth of the
basin prevented the development of the life cycle
of these deep dwelling species.

(2) A distinct peak in Globigerina bulloides has
been dated to 10.74 #C kyr B.P. (11.8 cal kyr
B.P.) using planktic foraminifers obtained from
core CM92-43 (Asioli, 1996; Langone et al., 1996).
An equivalent event in a core sequence from the
Tyrrhenian Sea (core ET91-18 in Capotondi, 1995)
has been dated to 10.63 '*C kyr B.P. (AMS dating
on planktic foraminifers). This G. bulloides peak
occurs during the YD (GS-1) cold episode.

(3) A conspicuous shift in the Globigerina bul-
loides 880 curve towards lighter values is dated
to 10.5 **C kyr B.P. (ca. 11.5 cal kyr B.P.; Langone
et al., 1996) and post-dates the upper boundary
of the YD (GS-1) event. This feature is considered
to correspond to the onset of Termination IB.

(4) A strong decrease of Neogloboquadrina
pachyderma and Globorotalia inflata, accompanied
by a concurrent increase of Globorotalia truncatuli-
noides in the Tyrrhenian Sea, is a distinctive mid-
Holocene feature (core AC85-4 in Capotondi et al.,
1989; core BS78-13 in Benvenuti, 1989; core
ET91-18 in Capotondi et al., 1999). This bioevent
marks the last occurrence of N. pachyderma and
G. inflata in the Adriatic Sea (Jorissen et al., 1993;
Asioli, 1996; Capotondi et al., 1999; Tamburini
et al., 1998). An increase of Globingerinoides sac-
culifer (sensu Hemleben et al., 1989) follows this
bioevent in both the Adriatic and Tyrrhenian Seas.

This shift in dominance within the planktic fora-
miniferal assemblages has been dated to ca. 58 4
C kyr B.P. (ca. 6.0 cal kyr) and corresponds to the
time when the modern sea level high-stand was
attained (Trincardi et al., 1996). This transition
also corresponds to an episode of attenuated sedi-
mentation which marks the time that the sea
reached its maximum stand during the Holocene.
The condensed sediment units which formed at
this time provide a distinctive stratigraphic marker
which can easily be traced between the shallow,
marginal successions of the Adriatic. The trans-
ition corresponds to the boundary between eco-
zones 2 and 3 of Capotondi et al. (1999), the age
of which they suggest to be ca. 4.0 **C kyr B.P. in
the Tyrrhenian and 5.8 **C kyr B.P. in the Adriatic.
In our opinion, this age discrepancy is an artefact
introduced by lack of adequate *C control and
by an assumption of constant sediment accumula-
tion rates between dated horizons. Since the dates
correspond to a time of condensed deposition, the
actual time represented may vary markedly
between the two marine basins (Loutit et al.,
1988). In the light of this, linear extrapolation
between “C ages is inadvisable. This transition is
also characterised by a sharp increase in §3C
following a period of depleted 3'3C levels recorded
throughout the Mediterranean basins between ca.
9.0 and 5.0 '#C kyr B.P. (see Vergnaud-Grazzini
and Pierre, 1992; Pujol and Vergnaud-Grazzini,
1989; Vergnaud-Grazzini et al., 1989). This feature
has also been detected in the Globigerina bulloides
813C data obtained from both the MC82-12 and
CM92-43 cores.

The chronostratigraphy of the central Adriatic
Sea is based on 40 AMS !*C dates obtained from
planktic foraminifers from several core sequences
which span the last termination and the Holocene
(Langone et al., 1996; Trincardi et al., 1996). The
dates were corrected for the apparent *C age of
surface sea water (reservoir age), estimate to about
570 years in the Adriatic Basin (Langone et al.,
1996) and calibrated using the Stuiver and Reimer
(1993) CALIB 3.0 program. Independent tests of
the geochronology of the central Adriatic
sequences is provided by tephrochronology and
the identification of distinct features in oxygen
isotope stratigraphic records (Trincardi et al.,
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1994, 1996; Chondrogianni et al., 1996b; Calanchi
et al., 1998).

The chronology of the crater lake sequences is
based on the combined results of AMS radiocar-
bon dating of macrofossils, argon/argon dating,
tephrochronology, varve counting and palacomag-
netic correlations (for further details see Oldfield,
1996).

5. Palaeoenvironmental reconstructions

The full sequence of stratigraphical changes
recorded in the four sites is not discussed in this
paper. Details can be found in papers referenced
in this section but especially in Oldfield and
Guilizzoni (1996) where the results of the
PALICLAS project are reported. Here we focus
on environmental conditions and developments in
both the Mediterranean Sea and on land at around
the time of deposition of sapropel S1 (9.8 to
6.8 cal kyr B.P.). However, the marine foramini-
feral stratigraphic record is examined for a longer
period of time because it provides essential context
for linking the new evidence to previously pub-
lished accounts of sapropel S1.

5.1. Adriatic and Tyrrhenian records

The stratigraphical succession of the two marine
cores is summarised by considering developments
in six intervals (Figs. 3 and 4), recognised on the
basis of major changes in planktic foraminiferal
assemblages, in oxygen and carbon stable isotope
ratios and in pollen assemblages. The likely habi-
tats indicated by the main species of planktic
foraminifers used in our interpretations are based
on the interpretations of Pujol and Vergnaud-
Grazzini (1995) and references therein. Note
that Globigerinoides ex gr. ruber comprises
Globigerinoides ruber (pink and alba varieties),
Globigerinoides gomitulus and Globigerinoides elon-
gatus, while Globigerinoides sacculifer includes
Globigerinoides trilobus, Globigerinoides sacculifer
and Globigerinoides quadrilobatus (Hemleben et al.,
1989). The chronology is expressed in calendar
years.

Interval 6 (before 14.5 cal kyr B.P.). The plank-

tic assemblage is dominated by Globorotalia scitula,
Neogloboquadrina pachyderma, Globigerina bul-
loides and Globigerina quinqueloba while ‘warm’
species, such as Globigerinoides ex gr. ruber and
Orbulinai, are virtually absent. During this interval,
cold and productive waters characterised both the
Adriatic and Tyrrhenian Seas.

Interval 5 (14.5-12.8 cal kyr B.P.). At the begin-
ning of this phase an abrupt warming of the
surface waters is recorded (increase of
Globigerinoides ex gr. ruber per cent), followed by
gradual cooling which is well-defined in the record
from CM92-43 (Asioli, 1996; Asioli et al., 1997).
This cooling trend is also evident in other
Tyrrhenian and Adriatic cores (IN68-9 in Rohling
et al.,, 1997, ET91-18 and IN68-5 in Capotondi
et al., 1999), although it is not evident in the
record from core MC 82-12 because of the lower
resolution of that sequence. The initial abrupt
warming (between 15.0 and 14.6 cal kyr B.P.) is
equivalent in age to zone GI-le of the GRIP ice-
core record (Bjorck et al., 1998), while the cooling
trend between ca. 14.6 and 13.0 cal kyr B.P. equ-
ates approximately with zones GI-1d to GI-la in
GRIP. This cooling trend in the Mediterranean
appears to have been characterised by three distinc-
tive steps (Asioli et al., 1998), which bears a
striking resemblance to the sequence of events in
the GRIP record between zones GI-1d to GI-1a.
During the second of these steps, an episode of
fresh water influx is inferred from the §'*0 com-
position of Globigerina bulloides in core CM92-43.
This peak is contemporaneous with the mwp-1A
record from the Atlantic (sensu Fairbanks, 1989
and Clark et al., 1996). This episode of freshwater
influx into the Mediterranean was first recognised
by Vergnaud-Grazzini and Pierre (1992) in cores
from the southern Adriatic. This event is not so
well-defined in the isotopic data from the
Tyrrhenian Sea. The foraminiferal assemblage cor-
responding to this event is dominated by
Globigerina quinqueloba and Globigerinoides ex gr.
ruber in the central Adriatic and by Globigerina
inflata, Neogloboquadrina pachyderma and G. ex
gr. ruber in the southern Adriatic (core IN68-5,
winter assemblage in the western Mediterranean,
apparently requiring a well-mixed and cool-mixed
layer (Pujol and Vergnaud-Grazzini, 1995).



225

D. Ariztegui et al. | Palaecogeography, Palaeoclimatology, Palaeoecology 158 (2000) 215-240

‘pung4Q pue syv.aa1vjinbav vjjauriasigojn jo sagejusdrad
WNWIUTW YIM 9pIoutod syead asay ] “4afijnoovs saprouriadiqojn pue vivpfur vuriasigopn jo yead e se paugop-[om st [S [odoides 01 judreamnbs st jey) oposide ay3 jo
uonisodap ay) ur yeaIq e ‘YS1y £I0A JOU ST 2100 SIY} Ul UoNN[osal [eroduwd) Ay} YSNoyI[y "€H-7EIND 2109 Ul POYep SIUIAJ0I] O} UONB[AIIOD 19}k SIedK Iepud[ed ur passaidxd
are $a8Y "ZI-T8DIN 2109 Ul LGNt Sap1ouriadiqojn pue sapiojng vuriasiqorn ul suonisodwod 2dojost uoqred pue UdgAX0 pPue SaSR[qUIASSE IQJIUIULIO) dnyue[d ‘t ‘S

| wppeed o | o | e T o P I ol - .
lynooes 9 | +syeiejemnbeen | EINMOS'D _ eungip | seproumyeaun | seqri wbxen | el o N POiIng 9 PIOINg D BQUY ===
_ 9 . sepopng 'y ——
_ m |
, [ I O
1
. ; i
s ! 7 L L A Lgg UORGUMLGL
V8 Sl
5 i
v - - : at - Pt 2 iR CTCTET™ . S O B
€ | o Lo
els §6
N — — — — pa—— — —_— [—— — —_— —_— — - — —_— —_— — —_—
ais
T 09
[ N _ B e ot
I £s
| |
| }
— T T t T T T F T o s s r T T — T = _ T T R, 0
€ e 0 o o § 00 02 o 0o o 0o o2 00 o00@ O @ 00 o O 00 ® o o0 o [ [ [] 1} L T ] i zZ € ¥ 5
s{enseju (%) e28pUIWRIOS OBl (%) Dq@ (%) 02 .nm.ic



226 D. Ariztegui et al. | Palaeogeography, Palaeoclimatology, Palaeoecology 158 (2000) 215-240

Interval 4 (12.8-11.5 cal kyr B.P.). Subtropical
species disappear in the Adriatic (core CM92-43)
or abruptly decrease to a very low frequency in
the Tyrrhenian (core MC82-12). These species are
replaced by Globigerina bulloides, Globigerina quin-
queloba and Neogloboquadrina pachyderma. The
interval is also characterised by a peak of Artemisia
and Chenopodiaceae pollen (Lowe et al., 1996a,b),
a positive peak in 6'3C and maximal TOC fluxes.
All these indicators point to a cold episode charac-
terised by relatively arid conditions on land and
cold and productive ocean waters. This interval
corresponds to the cold YD chronozone (GRIP
zone GS-1). During this phase, the oxygen isotopic
composition of G. bulloides changed to more posi-
tive values.

Interval 3 (11.5-9.5calkyr B.P.). The lower
part of this interval is characterised by either the
reappearance of (core CM92-43), or substantial
increase in (core MC82-12), Globigerinoides ex gr.
ruber, together with high abundance of the herbiv-
orous species Globigerina inflata and Globorotalia
truncatulinoides, while Neogloboquadrina pachy-
derma is almost absent. The data for this interval
indicate phytoplankton blooms, strong vertical
mixing of the water column during the winter and
stratification during summer; the same event is
reflected in the records from the southern Adriatic
and other Tyrrhenian sequences (Benvenuti, 1989;
Rohling et al., 1997; Capotondi et al., 1999). A
concomitant rapid increase in arboreal pollen per-
centages during this interval indicates that steppe
genera were replaced by forests of Quercus and
other deciduous trees (Lowe et al., 1996a,b), while
the 8'®0 values become more negative. These
developments coincide with evidence for enhanced
erosion on the shelf after the termination of the
YD, and by reduced deposition in the deeper
basins (Cattaneo and Trincardi, 1999).

Interval 2 (9.5-6.0 cal kyr B.P.). During this
interval, which corresponds approximately to the
time of deposition of sapropel S1, further diagnos-
tic changes in the foraminiferal assemblages are
recorded. In the central Adriatic (core CM92-43)
as well as the southern Adriatic (Rohling et al.,
1997), Globorotalia truncatulinoides is absent, while
there are renewed increases in Neogloboquadrina
pachyderma and Globigerina inflata in two phases:

one between 8.0 and 7.5 cal kyr B.P. and another
between 7.0 and 6.0 cal kyr B.P. A similar fluctua-
tion is observed in the 8'3C values of Globigerina
bulloides over this time period. This episode of
generally-depleted 3'3C values is interrupted by a
short-lived phase of relative enrichment lasting
only a few hundred years and corresponding to a
temporary re-increase in G. inflata. In the benthic
assemblage of the core obtained from the MAD,
some species indicative of organic matter enrich-
ment and/or oxygen depletion, such as Uvigerina
peregrina and Uvigerina mediterranea (Lutze and
Coulbourn, 1984), increase during the time interval
of S1 deposition, while Hyalinea balthica is also
quite abundant.

High-resolution seismic profiles indicate an
increased supply of muddy sediment to the shelf
between ca. 9.5 and 6.0 calkyr B.P. (Fig.5;
Cattaneo and Trincardi, 1999). A thickness of as
much as 15m of mud accumulated in shore-
parallel depocentres during this interval, with an
average sediment accumulation rate exceeding
4 mm/yr (Cattaneo and Trincardi, 1999). It was
during this interval that sapropel S1 was deposited
in the Levantine Basin as two phases of organic-
rich sediment, one from 9.5 to 8.2 cal kyr B.P.
(Sla) and one from 7.8 to 7.0 cal kyr B.P. (S1b).
In the Adriatic (MAD) core, the increased TOC
flux values and the lowest magnetic susceptibility
measure (X in Fig. 3) are associated with the
earliest of these two phases. Magnetite dissolution
related to reductive diagenesis is typical of sapropel
layers (e.g. van Santvoort et al., 1997) and has
already been recognised in the Adriatic sediments
by Oldfield (1996).

There is no clear lithological equivalent in the
Tyrrhenian Sea record (in the form of a black,
sapropelitic clay) to the S1 sapropel found else-
where in the Mediterranean. However, in the part
of the Tyrrhenian record that is of equivalent age,
there are changes in faunal, isotopic and palaeo-
magnetic stratigraphy similar to those typically
associated with S1 layers. The strongest similarities
are evident in the foraminiferal stratigraphies.
Globorotalia truncatulinoides and Globorotalia sci-
tula disappear from both the Tyrrhenian and the
Adriatic records from ca. 10.0 cal kyr B.P. This is
followed by peaks in Orbulina, Globigerinella aequi-
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lateralis and Globigerina praecalida, which coincide
with a marked decrease in Globigerina inflata. This
biostratigraphical sequence is in accordance with
that recorded for the sapropel S1 interval in the
Ionian Sea (Lander Rasmussen, 1991), in the
Levantine Basin (Rohling et al., 1993) and in time-
equivalent deposits in the Corsica Channel
(Benvenuti, 1989; Capotondi, 1995). Indeed, a
significant drop in percentages of G. inflata appears
to be diagnostic of S1 sapropel layers (Williams
and Thunell, 1979). Following these developments,
G. inflata re-expands, while Globigerinoides ex gr.
ruber, Orbulina, G. aequilateralis and G. praecalida
all decrease. G. truncatulinoides is also recorded in
higher percentages in other Tyrrhenian sites over
the same time period (core MC82-2 in Tamburini
etal., 1998; and core ET91-18 in Capotondi, 1995).
This short-lived episode coincides with the reoccur-
rence of G. inflata in the Adriatic Basin between
8.0 and 7.5calkyr B.P., which Rohling et al.
(1997) equated with a break in sapropel depos-
ition. Since G. inflata and G. truncatulinoides prefer
a cool and well-mixed layer with intermediate to
high nutrient levels (Pujol and Vergnaud-Grazzini,
1995), the data may reflect a short-lived episode
of cooling and/or increased contrast in seasonal
conditions with vertical mixing during the winter.
After this event (from ca. 7.5calkyr B.P.), G.
aequilateralis, G. praecalida and Orbulina increase
once again, accompanied by the strong representa-
tion of Neogloboquadrina pachyderma during
interval S1b. In the Tyrrhenian Sea records, the
final peak in G. inflata is dated to ca. 6.0 cal kyr
B.P. An equivalent feature may occur in core
MCS82-12, although it is not as clear. Here, the
final peak in G. inflata precedes the disappearance
of N. pachyderma and the reoccurrence of G.
truncatulinoides. We equate this bioevent with the
final G. inflata peak in the MAD records, which is
dated to 6.0-7.0 cal kyr B.P.

Interval 1 (6.0 cal kyr B.P.—present): Globigerina
inflata and Neogloboquadrina pachyderma disap-
peared in the Adriatic Basin during the latter
part of the Holocene and decreased to very low
frequency in Tyrrhenian Sea assemblages.
Globorotalia truncatulinoides, which disappeared in
the Adriatic basin at ca. 10.0-9.8 cal kyr B.P.,
persisted into the late Holocene in the Tyrrhenian

Basin. Increased frequencies of Globigerinoides sac-
culifer and Globigerinoides ex gr. ruber character-
ised the late Holocene assemblages in both seas.
These changes indicate that, during the late
Holocene, the surface waters at both locations
were dominated by an oligotrophic mixed layer
for most of the year.

5.2. Crater lake records

Core PALB94-3A (120 m water depth; see
Table 1) from Lake Albano contains a continuous
Holocene record with a clear glacial-Holocene
boundary dated to 11.48 cal kyr B.P. (Oldfield,
1996; Chondrogianni et al., 1996b). The Holocene
sediments are laminated on a millimetre scale with
the exception of the middle Holocene part of the
sequence which is characterised by more frequent
diatom blooms and higher sedimentation rates.
Although high productivity levels characterise the
entire Holocene sequence as estimated by recon-
structed trophic status (Ryves et al., 1996), the
early Holocene deposits are particularly organic-
rich, as shown by high TOC as well as by relatively
high HI values (Fig. 6). The results of investiga-
tions of a number of biological indicators, includ-
ing pigment concentrations and algal remains,
indicate that these variations more probably reflect
changes in lake productivity (Ryves et al., 1996;
Ariztegui et al., 1996¢). During the period in which
sapropel S1 developed in the Mediterranean, TOC
values were relatively stable (average 1.6%) and
the laminated nature of the lake deposits suggests
that hypolimnetic anoxia developed in relatively
deep waters. Between 8.1 and 7.6 cal kyr B.P.,
however, there is a decrease in TOC fluxes and in
HI values, a substantial decrease in pigment con-
centrations, a marked decrease in isorenieratene/
TOC ratios and dominance of diatoms over other
types of algae (Ryves et al., 1996; Ariztegui et al.,
1996¢), all of which suggests a short-lived episode
of reduced anoxia contemporaneous with a decline
in primary productivity and/or preservation. In
addition, Manca et al. (1996) reported a drop in
concentration and diversity of chydorids (type of
chironomids) during this short interval to values
characteristic of the Wiirm late-glacial period, sug-
gesting that a short-lived cold event affected the
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region during the mid-Holocene. This point is
returned to below.

Comparable evidence can be found in the
biostratigraphical records obtained from Lake
Nemi. Core PNemi-1B was retrieved from the
deepest part of Lake Nemi, in a water depth of
30 m (Fig. 7 and Table 1). The sediment sequence
at this locality consists of three distinct lithological
units, all of which contain diatom-rich beds and
laminations intercalated with massive muds
(Chondrogianni et al., 1996a). A well-developed
set of laminations characterises the early Holocene
part of the sequence, with a diatom flora domi-
nated by Stephanodiscus minutulus (Fig.7), a
taxon typical of high lacustrine primary produc-
tivity (Ryves et al., 1996). As in the Lake Albano
record, the interval contemporaneous with the
deposition of sapropel S1 is characterised by high
values of isorenieratene and a marked decline in
magnetic content associated with a larger magnetic
grain size, strongly suggestive of reductive diagen-
esis (Alvisi and Vigliotti, 1996; Vigliotti et al.,
1999). Between 8.3 and 8.5 cal kyr B.P., however,
a significant amount of magnetic content is
reflected in high values of concentration-dependent
parameters such as susceptibility (K), anhysteretic
and isothermal remanence (ARM, SIRM)
(Fig. 7). We interpret this increased content of
ferrimagnetic minerals as related to environmental
changes leading to the interruption of dominant
anoxic conditions in the water column and the
consequent preservation of primary ferrimagnetic
minerals within the sediment. The coincidence with
variations in biological proxies (diatom assem-
blages) and pigment content (isorenieratene) sup-
port this interpretation.

Pollen-stratigraphic  evidence from Lakes
Albano and Nemi also suggest that there were
significant changes in terrestrial vegetation at
around the time of formation of sapropel S1. The
most detailed of the two palaeobotanical records
for the Holocene is that from Lake Nemi (Fig. 7).
This record displays an increasing abundance of
Quercus deciduous and Corylus contemporaneous
with the beginning of S1 deposition in the
Mediterranean (ca. 10.0 cal kyr B.P.). Both taxa
suggest warm and wet conditions. A clear decrease

in pollen abundance of a number of broadleaf
trees can be observed for the period ca. 8.5-
7.5 cal kyr B.P. Taxa that were already well-repre-
sented in the pollen assemblages prior to 8.5 cal kyr
B.P., such as deciduous Quercus, Ulmux, Tilia,
Fagus and Corylus, show a sharp decline, while
there are also reduced representations of those
taxa that had only begun to expand in the region
at around that time (e.g. Carpinus
orientalis/Ostrya, and Carpinus betulus). There is
some pollen-stratigraphical evidence that suggests
anthropogenic activities in the area at the same
time (e.g. pollen of Cerealia type, such as the
Hordeum group and the Avena-Triticum group).
The pollen evidence as a whole, however, indicates
cooling of climate associated with a decrease in
regional precipitation as the most probable natural
cause of the simultaneous demise of such a wide
range of arboreal taxa between ca. 8.5 and
7.5 cal kyr B.P. (Lowe et al., 1996a). Additional
evidence supporting this interpretation is an
increase in the representation of Alnus pollen,
whereas percentages of pollen of aquatic and semi-
aquatic taxa decrease, probably reflecting lower
water levels and the spread of alder trees onto
exposed marginal lake deposits. A significant
decrease in pollen of the holly oak (Quercus ilex
type) and a re-increase in pollen of Betula also
support the notion of climatic cooling after ca.
8.1 cal kyr B.P. A similar decrease in pollen per-
centages and in concentrations of some of the
broadleaf trees is also evident in the pollen diagram
from the Lake Albano sequence at about
8.5 cal kyr B.P. (Lowe et al., 1996a).

5.3. Subdivision of sapropel S1: evidence from
other records

The marine and the crater lake sequences dis-
cussed in the preceding section show high levels of
accumulation of organic-rich sediments during the
period ca. 9.0 to 6.8 cal kyr B.P., equivalent to
the time of formation of sapropel S1 in the
Mediterranean region. There is also evidence for
a short-lived period of reduced organic matter
deposition (i.e. relatively low productivity and/or
preservation), dated to ca. 8.0 to 7.5 cal kyr B.P.
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This is considered to reflect regional climatic cool-
ing associated with reduced levels of precipitation
that interrupted a period of generally higher pre-
cipitation. A similar subdivision of the sapropel
S1 phase can be detected in a number of published
stratigraphical records from sites located in various
parts of the Mediterranean Basin.

A division of S1 into two phases separated by
a short interval with increased frequencies of
Globigerinoides sacculifer can be detected in cores
from the southern Adriatic (IN68-38, Jorissen
et al., 1993; AD91-17, Capotondi et al., 1999;
IN68-9, Rohling et al., 1997) and the eastern
Mediterranean (Znaidi Rivault, 1982). Znaidi
Rivault (1982) interpreted the short-term increase
in G. sacculifer in the middle of S1 (e.g. in Core
KS5, Fig. 8) as evidence of reworking of older
fossils. However, the fact that a contemporaneous
increase in G. sacculifer is found in the eastern
Mediterranean, the southern Adriatic and, from
our studies, the Meso-Adriatic Depression (e.g.
Core CM92-43, Fig. 3), supports the idea that this
is a regionally coherent signal, and that it reflects
a widespread change in palacoceanographic
conditions.

The stable isotope stratigraphy of several
records from the Mediterranean also shows a
subdivision of the S1 event. Fluctuations in §'3C
and 8'®0 compositions in the southern Adriatic
(Core KS-5) as well as in the Ionian Basin
(RC-191, KET82-16 and KET82-22) occur in the
middle of the S1 layer (Fontugne et al., 1989; Siani
et al.,, 1997). This is reflected particularly by
increased 880 values of Globigerinoides ruber. At
about the same time (8.0-7.5 'C kyr B.P.) there
is a shift towards more negative 8'°C values in
accumulated organic matter (Fontugne et al.,
1989), which is ascribed to a decrease in the influx
of terrestrial organic material, and which could be
explained by reduced precipitation levels in adja-
cent continental catchments.

Terrestrial records also display a short-lived
event at around 8.0 to 7.5cal kyr B.P. Pollen-
stratigraphic records from marine cores and conti-
nental sites in the eastern Mediterranean region
show a characteristic Pistacia phase which reflects
marked climatic warming in the region between
ca. 9.0 and 6.0 *C kyr B.P., when sapropel Sl

was deposited (Rossignol-Strick, 1995). In several
records, however, such as those from sites in
Greece and Syria (e.g. Wijmstra, 1969; Niklewski
and Van Zeist, 1970; Bottema, 1974), a notable
reduction in Pistacia and Quercus percentages,
associated with an increase in Artemisia pollen,
occurs in the middle of this phase.

There is therefore widespread evidence in both
the marine and continental records for significant
palacoenvironmental changes during the SI
interval, and the period is thus subdivided into an
early (Sla) and later phase (S1b), these being
separated by a short-lived episode which dates to
around 8.0 to 7.5 cal kyr B.P.

6. Discussion

Several key issues emerge from the new evidence
and discussions presented here.

(1) A peak in freshwater influx at about
13.5 cal kyr B.P. is revealed in the MAD and,
although much less pronounced, in the southern
Adriatic as well (Vergnaud-Grazzini and Pierre,
1992). The signal appears to be magnified in the
central Adriatic under the influence of local
factors, such as the reduced size and volume of
the Adriatic Basin, the limited connection to and
water exchange with the rest of the Mediterranean,
and increased supply by rivers, especially the Po.
The isotopic signal of this peak in freshwater
discharge is best developed in the 80 data
obtained from Globigerina bulloides. This species
dwells in deeper waters than Globigerinoides ruber.
Isotopic data from the latter show no significant
variations during this interval. This evidence sug-
gests that fresh waters entered the Adriatic Basin
as hyperpycnal flows; increased sediment load
entered the central Adriatic at that time ( Trincardi
et al., 1996; Cattaneo and Trincardi, 1999), and
may have triggered density flows. Both the influx
of freshwater and the increased sediment loads
may be explained by melting of glaciers in the
Alps and Apennines at the last termination
(Maisch, 1992). A high freshwater influx may also
explain the records of Sparganium (a freshwater
macrophyte — see Fig. 3) encountered in late-
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glacial sediments in several core sequences from
the MAD (Lowe et al., 1996a,b).

(2) Melt waters during the late-glacial interval
may have induced water stratification but did not
lead to the conditions favourable for sapropel
formation. The faunal records for this interval of
freshwater discharge in the southern Adriatic show
a peak of Globigerina inflata that indicates strong
vertical mixing during the winter season. A similar
signal is also found in the Tyrrhenian Basin record
(Fig. 4). Fresh water discharge appears therefore
to have been seasonal and not to have persisted
throughout the year.

(3) Conditions favourable for sapropel forma-
tion occur during the early Holocene, from ca.
9.5 cal kyr B.P. onwards. Clearly, some threshold
critical for the accumulation and preservation of
organic detritus was crossed at that time. The
contemporaneous disappearance of Globigerina
inflata from the Adriatic and from the eastern
Mediterranean is likely to have been in response
to a lack of mixing of the water column, with
year-round stratification. This could have been
induced by increased discharges by rivers in
response to wetter climatic conditions in the
region. The absence of Neogloboquadrina pachy-
derma from the Adriatic and Ionian records indi-
cates that a deep chlorophyll maximum (DCM)
was not able to develop (cf. Rohling and Gieskes,
1989). A strong density stratification must there-
fore have characterised the water column during
this interval. However, N. pachyderma and G.
inflata are recorded throughout the S1 interval in
the Tyrrhenian sequences, although with signifi-
cant fluctuations in frequency. Therefore, the
Tyrrhenian Basin appears to have been character-
ised by oceanographic conditions somewhat
different from those of the eastern Mediterranean
during the S1 interval: winter mixing was probably
active and DCM formed on a seasonal basis.
Moreover, the isotopic data obtained from plank-
tic foraminifers in Tyrrhenian core MC82-12
record an excursion to more depleted §3C and
5180 compositions, suggesting an increase of fresh-
water input. In summary, therefore, the records
from the two basins suggest water stratification
and reduced winter convection at the time of Sl
formation, but the differences in faunal assem-

blages indicate different palaeoceanographic condi-
tions. In the Tyrrhenian Sea, in particular,
conditions did not favour the formation of dark
organic-rich sediment, perhaps because of pro-
longed ventilation of bottom waters. This view
accords with that of Kallel et al. (1997a), who
regard N. pachyderma as an indicator of cold and
deep water and concluded that deep water formed
in the Tyrrhenian Sea during the sapropel interval.

(4) The relative importance of Globigerina
inflata in the faunal assemblages is not only indica-
tive of the vertical structure of the water mass, but
also allows us to make inferences about the hori-
zontal exchange of water masses throughout the
Mediterranean. According to Pujol and Vergnaud-
Grazzini (1995), the modern distribution of G.
inflata in the Mediterranean Sea coincides with
both the path of the modified Atlantic waters
(MAW), entering the Alboran Basin (and generat-
ing cyclonic gyres in the Balearic and Tyrrhenian
Seas), and the westward path of Levantine interme-
diate waters. Therefore, the pathway of MAW to
the easternmost part of the Sicilian Strait in winter
may be inferred from an assemblage dominated
by G. inflata. The presence of this species in the
Tyrrhenian Sea during the S1 interval may there-
fore indicate the inflow of Atlantic waters. Any
such inflow was probably quite weak, however, as
G. inflata shows very low frequencies in the
Alboran Basin (Pujol and Vergnaud-Grazzini,
1989; Rohling et al., 1995). The absence of G.
inflata in the eastern Mediterranean suggests a
limited exchange between the western and eastern
Mediterranean during S1, perhaps reflecting light
surficial water in the eastern basin. However, the
abundance of species such as the Globigerina
calida-praecalida, Globigerina digitata-praedigitata,
and the Globigerinella aequilateralis group (spinose
and carnivorous species typical of the Levantine
Basin, Parker, 1958; Thunell, 1978) during this
interval, in both the Tonian and Tyrrhenian Basins,
may indicate that intermediate water was active
and probably flowing to the western
Mediterranean, as it does in the modern circula-
tion. Contrary to some published views (Sarmiento
et al., 1988), therefore, we find no evidence for a
reversal of marine circulation during the SI1
interval.
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(5) In common with other records from the
Mediterranean Sea, we have found evidence for a
subdivision of sapropel S1 into two sub-units (Sla
and S1b) separated by a mid-S1 interruption,
dated to ca. 8.0 to 7.5calkyr B.P. The short
interruption in formation of S1 is marked by a
very similar faunal turnover in both marine basins.
In the foraminifer assemblage the reoccurrence of
Globigerina inflata between 8.0 and 7.5 cal kyr B.P.
suggests that vertical mixing during winter was
re-established in the Adriatic and Levantine
Basins. Moreover, the peak percentages recorded
for this species during this interval may indicate
an enhanced inflow of MAW; evidence for this
increased inflow can be detected throughout almost
the entire Mediterranean Basin. In the Alboran
Sea a substantial increase of G. inflata between
7.0-8.0 *C kyr B.P. has been interpreted as the
onset of more or less modern hydrographic condi-
tions (Pujol and Vergnaud-Grazzini, 1989; Rohling
et al., 1995). The constrained stratigraphic reso-
lution in that area, however, does not allow secure
correlation of this event with the base of the S1
interruption evident in our records or with the
younger peak of G. inflata at 7.0 cal kyr B.P. The
concurrent occurrence of Neogloboquadrina pachy-
derma may indicate some deep-water formation in
the Adriatic region during this break. Moreover,
the increase of Globigerinoides sacculifer, a symbi-
ont bearing species dwelling in warm and oligotro-
phic mixed layer, during the S1 interruption
implies that waters at that time must have been
characterised by a scarcity or absence of turbidity.
Similar evidence is recorded throughout the
Mediterranean, which suggests that there was
reduced fluvial inflow from the time of the Sl
interruption.

(6) Several lines of evidence suggest a marked
contrast between sub-units Sla and S1b. Benthic
foraminiferal assemblages indicate that deeper
waters remained cool and oxygenated in the MAD
during Sla, while the southern Adriatic was azoic
and not ventilated (Jorissen et al., 1993; Rohling
et al.,, 1997). On the other hand, ventilation as
well as a high degree of productivity in the water
column appears to have characterised both basins
during the deposition of S1b. The evidence from
the MAD is of sufficient resolution to show that

Hyalinea balthica gradually disappeared during
S1b while Brizalina spathulata was spreading into
the basin. The former taxon indicates cold and
relatively well-oxygenated bottom waters (Ross,
1984), whereas the high frequency of the latter
taxon indicates low-oxygen waters and marked
stratification throughout most of the year
(Barmawidjaja et al., 1995a,b). Fluxes of TOC
were greater during Sla and S1b. Furthermore,
313C of Globigerinoides ruber is in general more
depleted in S1b than in Sla, probably due to a
comparatively lower productivity during S1b. The
planktic evidence discussed above also points to
significant differences between the S1 sub-units.

(7) The termination of S1 must have resulted
from a change in seasonality and an increased
influx of Atlantic water into the Mediterranean,
because it coincides with the reappearance of
Globigerina inflata, which suggests that both the
Adriatic and Levantine Basins became well venti-
lated again.

(8) The stratigraphic information obtained
from the crater lake basins provides evidence for
significant environmental changes during the time
of S1 deposition in the marine basins. Relatively
stable levels of productivity and preservation of
organic matter characterise the Lakes Albano and
Nemi records during the S1 interval, and here too
there is evidence for a short-lived episode of declin-
ing productivity and/or organic matter preserva-
tion, which we equate with the Early-Middle
Holocene transition (EMHT) (Stager and
Mayewski, 1998).

7. Conclusions

The formation of sapropel S1 and variations in
its development, both in a temporal (differentiation
of Sla and S1b) and spatial (contrasts between
western and eastern basins) context, are intricately
linked to palaeoceanographic changes. The new
evidence presented here shows that S1 formation
and variations within the S1 interval also correlate
with evidence in the terrestrial records for major
environmental changes that affected the Italian
mainland. The collective marine and terrestrial
data indicate that both the marine and continental
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realms were probably responding together to
regional climatic changes, and the formation of S1
in the sea coincides with a significant increase in
precipitation levels. This is inferred mainly from
the evidence for the spread of broadleaf vegetation
across central ITtaly, and is an interpretation that
is supported by other pollen-stratigraphical studies
of mid-Holocene successions in Italy and France
(Rossignol-Strick and Planchais, 1989; Guiot
et al., 1989). Such an increase in precipitation, we
suggest, also explains the contemporaneous
increase in sediment and nutrient supply, as well
as the salinity changes, inferred from the marine
records presented in this paper. The high resolution
records from the MAD and from Lakes Albano
and Nemi also suggest that this episode of warm
and humid conditions was interrupted by an
abrupt cooling event that lasted ca. 500 years. This
event, which resulted in an interruption in the
deposition of Sl1, is well-defined in marine and
continental records in and around the western and
eastern Mediterranean, and seems to be coeval
with the EMHT cooling event reflected in records
from the equator and from the poles, and attrib-
uted by Stager and Mayewski (1998) to marked
changes in solar irradiance or in cosmic ray flux.
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